Current Status of the River Buffalo (*Bubalus bubalis* L.) Gene Map

S. M. El Nahas, H. A. de Hondt, and J. E. Womack

Ninety-nine loci have been assigned to river buffalo chromosomes, 67 of which are coding genes and 32 of which are anonymous DNA segments (microsatellites). Sixty-seven assignments were based on cosegregation of cellular markers in so-matic cell hybrids (synteny), whereas 39 were based on in situ hybridization of fixed metaphase chromosomes with labeled DNA probes. Seven loci were assigned by both methods. Of the 67 assignments in somatic cell hybrids, 38 were based on polymerase chain reaction (PCR), 11 on isozyme electrophoresis, 10 on restriction endonuclease digestion of DNA, 4 on immunofluorescence, and 4 on chromosomal identification. A genetic marker or syntenic group has been assigned to each arm of the five submetacentric buffalo chromosomes as well as to the 19 acrocentric autosomes, and the X and Y chromosomes, and without exception, cattle markers map to the buffalo chromosome or chromosomal region predicted from chromosome banding similarity.

The river buffalo is an economically important livestock species in many Asian and Mediterranean countries, and its genetic improvement, especially in reproductive performance and quantity of meat and milk production, ranks high among agricultural research needs of these countries. The majority of important traits in buffalo, as in other farm animals, are polygenic in nature and therefore difficult to isolate and identify at the genome level. However, recent success in mapping quantitative trait loci (QTL) in cattle, pigs, and other livestock species has demonstrated new opportunities for analyzing, and eventually controlling, these continuously distributed traits (Andersson et al. 1994; Georges et al. 1995).

Animal improvement by the genomic approach has been targeted by establishing physical and linkage maps as tools for developing more efficient breeding strategies. Physical mapping includes the use of somatic cell hybrids and in situ hybridization to determine syntenic relationships between loci and to assign loci to specific regions of their respective chromosomes. The establishment of a physical map at the chromosomal level of resolution will facilitate the development of a genetic map, which defines the linear relationship of the loci on the chromosome and estimates the distances between them by frequency of meiotic recombination. Genetic maps will be used to study economically important trait loci. A saturated map of markers, applied to reference families segregating economic traits, will reveal the existence of linkage associations between some of these trait loci and microsatellite markers. Microsatellite markers are easy to identify and often highly polymorphic, and will thus permit marker-assisted selection (MAS) of desirable traits to which they are linked. Some of these marker-trait associations have already been discovered in cattle (Georges et al. 1995).

The close chromosomal relationship between buffalo and cattle is useful in constructing the buffalo genome map. Extensive chromosome arm homology between cattle and river buffalo has been established (Report of the Committee for the Standardization of Banded Karyotypes of the River Buffalo 1994). While the cattle genome consists of 29 acrocentric autosomes plus the X and Y chromosomes, the buffalo genome has 5 biarmed and 19 acrocentric autosomes. Thus the arm number is identical between the species and every arm of the five biarmed buffalo chromosomes has banding similarity to a cattle acrocentric chromosome. Comparative cytogenetics and physical gene mapping have shown that chromosome band identity between closely related species is

 $\ensuremath{\mathbb{C}}$ 2001 The American Genetic Association 92:221–225

From the Department of Cell Biology, National Research Center, Cairo, Egypt (El Nahas and de Hondt) and Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, Hwy. 60, College Station, TX 77843 (Womack). Address correspondence to J. E. Womack at the address above or email: jwomack@cvm.tamu.edu.

a good indicator of genetic homology (Nash and O'Brien 1982) and therefore chromosome banding conservation is predictive of conservation of genetic content. Because of the extensive chromosome conservation between cattle and river buffalo, the cattle physical map can potentially function as a template for developing the buffalo gene map.

The cattle genome is well characterized, with synteny and linkage groups assigned to each chromosome (Masabanda et al. 1996; Mezzelani et al. 1994). Based on banding similarity, the five submetacentric pairs of the buffalo are assumed to originate from fusion of 10 cattle acrocentrics (Report of the Committee for the Standardization of Banded Karyotypes of the River Buffalo 1994). There is no obvious rearrangement of banding pattern in any of the autosomal arms, although the X chromosomes reveal morphologic differences, including the location of the centromere. So far 67 coding genes and 32 DNA segments (microsatellites) have been assigned to river buffalo chromosomes (Figure 1, Table 1). Thirty-nine loci were assigned directly to chromosomes using in situ hybridization, whereas 67 loci were assigned to syntenic groups and to chromosomes using somatic cell hybrids (7 loci were assigned by both methods). These assignments were made in a panel of 37 hybrids resulting from a fusion of the Chinese hamster cell line wg3h with river buffalo lymphocytes (El Nahas et al. 1996b). The investigated markers cover 29 cattle autosomes and the X and Y chromosomes. A marker or a syntenic group was assigned to each arm of the five buffalo submetacentrics plus the 19 acrocentric autosomes and the X and Y chromosomes. Comparative synteny mapping has confirmed the hypothesis that the five submetacentric chromosome pairs of the river buffalo arose by centric fusion of 10 cattle acrocentric pairs, and has also contributed to identifying the nature of the biarmed buffalo chromosome (de Hondt et al. 2000; El Nahas et al. 1997, 1999; Othman and El Nahas 1999). Up to now, no syntenic discrepancies have been found between cattle and buffalo. It should be pointed out here that in 1996, the Texas nomenclature reversed the position of cattle chromosomes 4 and 6 in the Reading Conference (1980) and ISCNDA 89 (1990) nomenclature, taking chromosome 6 as 4 and vice versa. As a result, U13, previously assigned to BTA 4 (Neibergs et al. 1993) and consequently to BBU 7 (El Nahas et

Figure 1. Ideogram of the river buffalo according to the standard G-banded karyotype (Report of the Committee for the Standardization of Banded Karyotypes of the River Buffalo 1994) with physical location of loci referenced in Table 1.

Table 1. Alphabetical list of loci mapped in river buffalo

		Buffalo	Cattle		
Locus symbol	Locus name	chromosomal	chromosomal	Mode	Reference
Locus symbol	Locus name	location	location	Mode	Reference
ABL1	Abelson murine viral oncogene homolog	BBU 12	BTA11	SR	El Nahas et al., 1996a
ACTA1	Alpha skeletal actin	BBU 4p	BTA28	SR	El Nahas et al., 1996a
ANT1	Adenine nucleotide translocator 1	BBU 1p	BTA27	SP	El Nahas et al., 1997
ASS	Argininosuccinate synthetase	BBU 12	BTA11	SR	El Nahas et al., 1996a
BOLADR3B RoWC11	Major histocompatability complex class II, DK beta I Rouine workshop cluster 11	BBU 2p22	BIA23 BTA25 or 16	SP, ISH	de Hondt et al., 2000; Iannuzzi et al., 1993c
BSPN	Brain specific protein n amino chain	BBU 15	BTA14	SP	de Hondt et al. 1997
CSN1S2	Alpha-S2-casein	BBU 7a32	BTA6a31	ISH	Jannuzzi et al., 1996b
CATHL@	Cathelicidin	BBU 21q24	BTA22q24	ISH	Iannuzzi et al., 1998a
CD 14	Antigen CD 14, LPS-binding protein	BBU 12	BTA11	SI	El Nahas et al., 1996b
CD 18	Antigen CD 18, lymphocyte function-associated	BBU 1q	BTA1	SP	de Hondt et al., 1997
CD 71	Antigen CD71 transferrin receptor	BBI 1	BTA1 or 27	SL SC	Fl Nahas et al. 1996b: Ramadan et al. 2000
CD 81	Antigen CD81 (TAPA-1)	BBU 22	BTA24	SI	Abou-Mossallem, 1999
CGA	Glycoprotein hormone α-polypeptide	BBU 10	BTA9	SP	de Hondt et al., 1997
CGN1	Conglutinin	BBU 4p16	BTA22q18	ISH, SR	El Nahas et al., 1996a; Iannuzzi et al., 1994b
CHRNB1	Cholinergic receptor, nicotinic, β -polypeptide	BBU 3p15	BTA19	ISH	Iannuzzi et al., 1999
CJAI CDVD1	Connexin 43	BBU 10q17	BTA9q15-q16	ISH	lannuzzi et al., 1998a
CRYG	Crystallin g-polypeptide	BBU 3p15	BIAI9 BTA2	ISH SR	Fl Nabas et al. 1999
DEFB	Beta-defensin	BBU 1p12	BTA27	ISH	Jannuzzi et al., 1996a
EEF2	Elongation factor 2	BBU 9q15	BTA7q15	ISH	Iannuzzi et al., 1997a
F10	Coagulation factor X	BBU 13	BTA12	SP	Oraby et al., 1998
FN1	Fibronectin	BBU 2q	BTA2	SP	Othman and El Nahas, 1999
FSHB	Beta-follicle stimulating hormone	BBU 16	BTA15	SP	Oraby et al., 1998
FUCAIP	Fucosidase alpha-L-1 tissue	BBU 2q	BIAZ	SK SZ SC	El Nahas et al., 1996a de Hondt et al., 1001; El Nabas et al., 1002
GAFD GGTA1	Alpha-galactosyltansferase 1	BBU 12a36	BTA11a26	SZ, SC ISH	lannuzzi et al. 1997, El Nallas et al., 1995
GH1	Growth hormone	BBU 3p24	BTA9a22	ISH	Jannuzzi et al., 1999
HBB	Beta hemoglobin	BBU 16	BTA15q22q27	SP	Oraby et al., 1998
HEXA	Beta-N acetyl glucosaminidase	BBU 11	BTA10	SZ	El Nahta, 1996
IFNG	Gamma interferon	BBU 4q23-26	BTA5q22-q24	ISH	Hassanane et al., 1994
IFNT	Trophoblast interferon	BBU 3q15	BTA8q15	ISH	lannuzzi et al., 1993b
IFINW IGF1	Unega Interieron Insulin-like growth factor 1	BBU Ja	BIA8QIS BTA5	ISH SP	Fl Nabas et al. 1993D
IGHG	Immunoglobulin gamma heavy chain	BBU 20a23-25	BTA21a24	ISH	Hassanane et al., 1993
INHA	Inhibin A subunit	BBU 2q	BTA2q36-q42	SP	de Hondt et al., 2000
INHBA	Inhibin beta-A	BBU 8	BTA4q26	SP	Othman and El Nahas, 1999
LDHA	Lactate dehydrogenase A	BBU 5p	BTA29	SZ	El Nahas et al., 1999
LDHB	Lactate dehydrogenase B	BBU 4q	BTA5	SZ, SC	de Hondt et al., 1991; El Nahas et al., 1993, 1999
LDLK	Low-density inpoprotein receptor	BBU 9 BBU 19	BTA16a28	SP	Othman and Fl Nahas 1999
LYZ	Lysozyme	BBU 4q23	BTA5a23	ISH	Jannuzzi et al., 1993a
MAP1B	Microtubule associated protein	BBU 19q13	BTA20q14	ISH	Iannuzzi et al., 1998a
MAP2C	Microtubule associated protein 2	BBU 3p	BTA19	SP	de Hondt et al., 2000
MBP	Myelin basic protein	BBU 22	BTA24q11-q13.2	SR	El Nahas et al., 1996a
MEI NE1	Malic enzyme	BBU 10 BBU 2p12	BTA9 BTA10c14	SZ	de Hondt et al., 1991; El Nahas et al., 1998
NP	Nucleoside phosphorylase	BBU 3P13	BTA19Q14 BTA10	13H S7	Fl Nabas et al. 1998
OCAM	Opoid binding and cell adhesion molecule	BBU 5p	BTA29	SP	El Nahas et al., 1999
OXT	Prepro-oxytocin	BBU 14	BTA13	SP	de Hondt et al., 1997
P4HB	2-oxoglutarate 4-dioxygenase, β-polypeptide	BBU 3p24	BTA19	ISH	Iannuzzi et al., 1999
PGD	Phosphogluconate dehydrogenase	BBU 5q	BTA16	SZ	El Nahas et al., 1999
PGM3 PCV2	Phosphoglucomutase	BBU 10	BIA9 DTA	SZ SD	El Nahas et al., 1998
PKM2	Pyrivate kinase muscle 2	BBU 0	BTA10	SZ	El Nahas et al. 1990a
PRL	Prolactin	BBU 2p	BTA23	SP	Othman and El Nahas, 1999
PRNP	Normal host prion protein	BBU 14	BTA13q17	SP, ISH	de Hondt et al., 1997; Iannuzzi et al., 1998b
RBP3	Retinol-binding protein 3 interstitial	BBU 4p	BTA28	SP	El Nahas et al., 1999
SOD2	Superoxide dismutase	BBU 10	BTA9	SZ	de Hondt et al., 1991
TDE3	1-cell receptor beta cluster	BBU 8 ^a	BIA4 BTA10a15 a16	SK	El Nahas et al., 1996a Jappuzzi et al., 1990
TPI1	Triose-phosphate isomerase 1	BBU 4a	BTA5	SZ SC	de Hondt et al. 1991: El Nahas et al. 1993
UMPS	Uridine monophosphate syntase	BBU 1q31	BTA1q31-q36	ISH	Iannuzzi et al., 1994a
VIL	Villin	BBU 2q33	BTA2q43	ISH	Iannuzzi et al., 1997e
X81804	Zinc finger protein	BBU 18	BTA18	ISH	Iannuzzi et al., 1997b
YES1	Yamagushi sarcoma viral oncogene homolog 1	BBU 22	BTA24	SR	El Nahas et al., 1996a
ZNF164 COSAE7	DNA segment	BBU 17 BBU 22a24	BIAI/Q24 BTA24a23	ISH	Jannuzzi et al., 1997D Jannuzzi et al. 1998a
CSRM60	DNA segment	BBU 22424	BTA10	SP	de Hondt et al. 2000
CSSM6	DNA segment	BBU 21	BTA22	SP	de Hondt et al., 2000
CSSM41	DNA segment	BBU 21	BTA22	SP	de Hondt et al., 2000
D1S4	DNA segment (MAF 46, ovine)	BBU 1q	BTA1	SP	de Hondt et al., 1997
D3S29	DNA segment (IDVGA 53)	BBU 6q15	BTA3q21	ISH	Iannuzzi et al., 1997a
D457 D6817	DNA segment (USSM14)	BBU 8~24	BIA4 PTA6a22	5P ISU	Uthman and El Nahas, 1999
D7S3	DNA segment	BBU 9	BTA0432 BTA7	SP	de Hondt et al. 1997
D8S2	DNA segment (CSSM47)	BBU 3q	BTA8	SP	de Hondt et al., 2000
		-			

Table 1. Continued

Locus symbol Locus name location location Mode Reference	
D9S1 DNA segment (ETH 225) BBU 10 BTA9 SP de Hondt et al., 1997	
D11S7 DNA segment (CSSM52) BBU 12 BTA11 SP Othman and El Nahas, 1999)
D12S16 DNA segment (IDVGA 41) BBU 13q15 BTA12q15 ISH Iannuzzi et al., 1997a	
D12S2 DNA segment (TGLA 9) BBU 13 BTA12 SP Oraby et al., 1998	
D14S2 DNA segment (CSSM36) BBU 15 BTA14 SP de Hondt et al., 1997	
D15S16 DNA segment (IDVGA 32) BBU 16q25 BTA15q25 ISH Iannuzzi et al., 1997a	
D16S21 DNA segment (IDVGA49) BBU 5q21 BTA16q17 ISH Iannuzzi et al., 1997c	
D16S8 DNA segment (HUJ614) BBU 5q BTA16 SP El Nahas et al., 1999	
D18S1 DNA segment (TGLA227) BBU 18 BTA18 SP Oraby et al., 1998	
D18S2 DNA segment (UWCA5) BBU 18 BTA18 SP Oraby et al., 1998	
D19S19 DNA segment (IDVGA47) BBU 3p22 BTA19q17 ISH Iannuzzi et al., 1997c	
D21S4 DNA segment (ETH 131) BBU 20 BTA21 SP de Hondt et al., 2000	
D21S11 DNA segment (CSSM18) BBU 20 BTA21 SP de Hondt et al., 2000	
D24S3 DNA segment (CSSM31) BBU 8* BTA4 SP de Hondt et al., 2000	
D25S2 DNA segment (IDVGA7) BBU 5p19 BTA29 ISH Iannuzzi et al., 1997c	
D26S14 DNA segment (IDVGA 59) BBU 23q22 BTA26q22 ISH Iannuzzi et al., 1997a	
D28S2 DNA segment (ETH1112) BBU 4p BTA28 SP El Nahas et al., 1999	
D29S12 DNA segment (IDVGA 71) BBU 24q13 BTA25 ISH Iannuzzi et al., 1997a	
IDVGA50 DNA segment BBUY BTA Y ISH Iannuzzi et al., 1998a	
IDVGA76 DNA segment BBU 15q15 BTA14q14 ISH Iannuzzi et al., 1998a	
IDVGA82 DNA segment BBUXq4 BTAXq34 ISH Iannuzzi et al., 1998a	
JAB10 DNA segment BBU 11q13 BTA10 ISH Iannuzzi et al., 1998a	

ISH: direct assignment using in situ hybridization; S: indirect assignment using somatic cell hybrids; P: polymerase chain reaction; Z: isozyme electrophoresis; R: restriction endonuclease; I: immunofluorescence; C: chromosomal identification.

* Assignment was corrected after Texas nomenclature (1996) (previously assigned to BBU 7).

al. 1996a) is now assigned to BTA 6 and BBU 8.

A linkage map of microsatellites or other highly polymorphic markers has not yet been established for river buffalo. It appears, however, that cattle microsatellites are conserved in the buffalo genome and map to the chromosomes predicted from similarity of banding patterns. If these conserved microsatellites are polymorphic in river buffalo, genome scans for buffalo QTL can be performed with microsatellites derived from cattle and organized on cattle linkage maps. Studies to determine the relative polymorphic information content (PIC) of cattle microsatellites in buffalo must be done to facilitate the approach. It is also likely that recombination rates between colinear markers will vary in cattle and buffalo gametogenesis. The potential for variation in recombination may be enhanced around the centromeres of the biarmed buffalo chromosomes.

References

Abou-Mossallem AA, 1999. Assignment of genes coding for leukocyte surface markers to Egyptian buffalo chromosomes (PhD dissertation). Cairo, Egypt: Cairo University.

Andersson L, Haley CS, Ellegren H, Knott SA, Johansson M, Andersson K, Andersson-Eklund L, Edfors-Lilja I, Fredholm M, Hansson I, Hakansson J, and Lundstrom K, 1994. Genetic mapping of quantitative trait loci for growth and fatness in pigs. Science 263:1771–1774.

de Hondt HA, Bosma AA, den Bieman M, de Haan NA, and van Zutphen LFM, 1991. Gene mapping in the river

buffalo (*Bubalus bubalis* L.). Genet Sel Evol 23(suppl 1): S104–S108.

de Hondt HA, Gallagher D, Oraby H, Othman OE, Bosma AA, Womack JE, and El-Nahas SM, 1997. Gene mapping in the river buffalo (*Bubalus bubalis* L.): five syntenic groups. J Anim Breed Genet 114:79–85.

de Hondt HA, Othman OE, Abdel Samad MF, Hassan AA, Oraby HA, and El Nahas SM, 2000. Mapping of eight molecular markers to river buffalo chromosomes and the confirmation of the nature of chromosomes 2 and 3. J Egypt German Soc Zool 31C:39–48.

El Nahas SM, Abdel-Tawab FM, Zahran MM, Soussa FS, Rashed MA, and Ali SM, 1998. Gene mapping of river buffalo by somatic cell hybridization. Egypt J Genet Cytol 27:171–179.

El Nahas SM, de Hondt HA, Othman OS, Bosma AA, and Haan NA, 1993. Assignment of genes to chromosome 4 of the river buffalo with a panel of buffalo-hamster hybrid cells. J Anim Breed Genet 110:182–185.

El Nahas SM, de Hondt HA, Soussa SF, and Hassan AM, 1999. Assignment of new loci to river buffalo chromosomes confirms the nature of chromosomes 4 and 5. J Anim Breed Genet 116:21–28.

El Nahas SM, Oraby HA, de Hondt HA, Medhat AM, Zahran MM, Mahfouz ER, and Karim AM, 1996a. Synteny mapping in river buffalo. Mamm Genome 7:831–834.

El Nahas SM, Oraby HA, Othman OE, de Hondt HA, Bosma AA, and Womack JE, 1997. Use of molecular markers for the identification of river buffalo chromosomes: chromosome one. J Anim Breed Genet 114:451–455.

El Nahas SM, Ramadan HA, Abou-Mossallem AA, Kurucz E, Vilmos P, and Ando I, 1996b. Assignment of genes coding for leukocyte surface molecules to river buffalo chromosomes. Vet Immunol Immunopathol 52: 435–443.

El Nahta S, 1996. Physical mapping in the buffalo: a first step towards the improvement of production and reproduction (PhD dissertation). Cairo, Egypt: Cairo University.

Georges M, Nielson D, MacKinnon M, Mishra A, Okimoto R, Pasquino AT, Sargeant LS, Sorenson A, Steel MR, Zhao X, Womack JE, and Hoeschele I, 1995. Mapping quantitative trait loci in dairy cattle by exploiting progeny testing. Genetics 139:907–920. Hassanane MS, Chowdhary BP, Gu F, Andersson L, and Gustavsson I, 1994. Mapping of the interferon gamma (IFNG) gene in river and swamp buffaloes by in situ hybridization. Hereditas 120:29–33.

Hassanane MS, Gu F, Chowdhary BP, Andersson, L, and Gustavsson I, 1993. In situ hybridization mapping of the immunoglobulin gamma heavy chain (IGHG) gene to chromosome 20q23-q25 in river buffaloes. Hereditas 118:285–288.

lannuzzi L, Di Meo GP, and Ferretti L. 1997a. Six bovine cosmid-derived microsatellites mapping different syntenic groups are fluorescence in situ hybridization mapped to six river buffalo chromosome. Chromosome Res 5:541–543.

lannuzzi L, Di Meo GP, Le Chalony C, and Goubin G, 1997b. FISH mapping of bovine zinc finger protein 164 (U23), X81804 (U9) genes to river buffalo chromosomes 17 and 18. Chromosome Res 5:569–570.

lannuzzi L, Di Meo GP, Perucatti A, Castiglioni B, and Ferretti L, 1998a. Eight molecular markers from bovine syntenic groups U2, U5, U24, U14, U12, U28, X and Y were fluorescence in situ mapped to eight river buffalo chromosomes. Chromosome Res 6:656–659.

Iannuzzi L, Di Meo GP, Ryan AM, Gallagher DS, Ferrara L, and Womack JE, 1994a. Localization of uridine monophosphate synthase (UMPS) gene to river buffalo chromosomes by FISH. Chromosome Res 2:255–256.

Iannuzzi L, Ferretti L, Di Meo GP, and Perucatti A, 1997c. FISH-mapping of bovine U21, U1 and U7 molecular markers to river buffalo chromosomes 3p, 5q and 5p. Chromosome Res 5:337–340.

lannuzzi L, Gallagher DS, Di Meo GP, Diamond G, Bevins CL, and Womack JE, 1996a. High-resolution FISH mapping of β -defensin genes to river buffalo and sheep chromosomes suggests a chromosome discrepancy in cattle standard karyotypes. Cytogenet Cell Genet 75: 10–13.

Iannuzzi L, Gallagher DS, Di Meo GP, Ryan AM, Perucatti A, Ferrara L, Irwin DM, and Womack JE, 1993a. Chromosomal localization of the lysozyme gene cluster in river buffalo (*Bubalus bubalis* L.). Chromosome Res 1:253–255.

Iannuzzi L, Gallagher DS, Di Meo GP, Yang Y, Womack JE, Davis SK, and Taylor JF, 1999. Comparative FISH-

mapping of six expressed gene loci to river buffalo and sheep chromosomes. Cytogenet Cell Genet 84:161–163.

Iannuzzi L, Gallagher DS, Liou LS, Di Meo GP, Ryan AM, Sastry KN, and Womack JE, 1994b. Chromosomal localization of conglutinin (CGN1) gene to river buffalo by sequential RBH-banding and FISH. Hereditas 120: 283–286.

lannuzzi L, Gallagher DS, Ryan AM, Di Meo GP, and Womack JE, 1993b. Chromosomal localization of omega and trophoblast interferon genes in cattle and river buffalo by sequential R-banding and fluorescent in situ hybridization. Cytogenet Cell Genet 62:224–227.

lannuzzi L, Gallagher DS, Womack JE, Di Meo GP, Schelling CP, and Groenen MAM, 1996b. FISH mapping of the α -S2 casein gene on river buffalo and cattle chromosomes identifies a nomenclature discrepancy in the bovine karyotype. Chromosome Res 4:159–162.

lannuzzi L, Gallagher DS, Womack JE, Di Meo GP, Skow LG, and Ferrara L, 1993c. Chromosomal localization of the major histocompatibility complex in cattle and river buffalo by fluorescent in situ hybridization. Hereditas 118:187–190.

lannuzzi L, Hayes H, Di Meo GP, Mercier D, and Kohno K, 1997d. Chromosomal localization of alpha-galactosyltransferase 1 (GGTA1) and elongation factor 2 (EEF2) genes in river buffalo by FISH. Chromosome Res 5:274–276.

Iannuzzi L, Palomba R, Di Meo GP, Permcatti A, and

Ferrara L, 1998b. Comparative FISH-mapping of the prion protein gene (PRNP) on cattle, river buffalo, sheep and goat chromosomes. Cytogenet Cell Genet 81:202– 204.

Iannuzzi L, Skow L, Di Meo GP, Gallagher DS, and Womack JE, 1997e. Comparative FISH-mapping of Villin (VIL) gene in river buffalo, sheep and goat chromosomes. Chromosome Res 5:199–202.

ISCNDA 89, 1990. International system for cytogenetic nomenclature of domestic animals (Di Berardino D, Hayes H, Long S, Fries R, eds). Cytogenet Cell Genet 53: 65–79.

Masabanda J, Kappes SM, Smith TPL, Beattie CW, and Fries R, 1996. Mapping of a linkage group to the last bovine chromosome (BTA27) without an assignment. Mamm Genome 7:229–230.

Mezzelani A, Solinas Toldo S, Nocart M, Guerin G, Ferretti L, and Fries R, 1994. Mapping of syntenic groups U7 and U27 to bovine chromosomes 25 and 12, respectively. Mamm Genome 5:574–576.

Nash WG and O'Brien SJ, 1982. Conserved subregions of homologous G-banded chromosomes between orders in mammalian evolution: carnivores and primates. Proc Natl Acad Sci USA 79:6631–6635.

Neibergs HL, Gallagher DS, Georges M, Sargeant LS, Dietz AB, and Womack JE, 1993. Physical mapping of inhibin B-A in domestic cattle. Mamm Genome 4:328–332.

Oraby HA, El Nahas SM, de Hondt HA, and Abdel Samad MF, 1998. Assignment of PCR markers to river buffalo chromosomes. Genet Sel Evol 30:71–78.

Othman OE and El Nahas SM, 1999. Synteny assignment of four genes and two microsatellite markers in river buffalo (*Bubalus bubalis* L.). J Anim Breed Genet 116: 161–168.

Ramadan HAI, Othman OE, Abdel Samad MF, Abou-Mossallem AA, and El Nahas SM, 2000. Somatic cell hybrids characterization by monoclonal antibodies and assignment of CD71 to the q arm of buffalo and cattle chromosome one. J Egypt German Soc Zool 31C:133– 143.

Reading Conference, 1980. Proceedings of the First International Conference on Standardization of Banded Karyotypes of Domestic Animals. Hereditas 92:145–162.

Report of the Committee for the Standardization of Banded Karyotypes of the River Buffalo, 1994. Standard karyotype of the river buffalo (*Bubalus bubalis* L., 2n = 50). Cytogenet Cell Genet 67:102–113.

Texas nomenclature, 1996. Standardization of cattle karyotype nomenclature: report of the Committee for the Standardization of the Cattle Karyotype (Popescou CP, Long S, Riggs P, Womack J, Schmutz S, Fries R, Gallagher D, eds). Cytogenet Cell Genet 74:259–261.

Received January 20, 2000 Accepted January 15, 2001

Corresponding Editor: Ann Bowling