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ABSTRACT

Phylogenetic analysis is the study of evolutionary relationships among molecules, phenotypes,
and organisms. In the context of protein sequence data, phylogenetic analysis is one of the
cornerstones of comparative sequence analysis and has many applications in the study of protein
evolution and function. This unit provides a brief review of the principles of phylogenetic analysis
and describes several different standard phylogenetic analyses of protein sequence data using
the RAXML (Randomized Axelerated Maximum Likelihood) Program. Curr. Protoc. Mol. Biol.
96:19.11.1-19.11.14. C© 2011 by John Wiley & Sons, Inc.
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INTRODUCTION
Phylogenetic analysis is a standard and es-

sential tool in any molecular biologist’s bioin-
formatics toolkit that, in the context of pro-
tein sequence analysis, enables us to study
the evolutionary history and change of pro-
teins and their function. Such analysis is es-
sential to understanding major evolutionary
questions, such as the origins and history of
macromolecules, developmental mechanisms,
phenotypes, and life itself. On a more prac-
tical level, phylogenetic analysis of protein
sequence data is integral to gene annotation,
prediction of gene function, the identification
and construction of gene families, and gene
discovery.

Phylogenetic trees are mathematical struc-
tures that depict the evolutionary history of
a group of organisms or genes. The aim of
phylogenetic trees is to depict historical (i.e.,
evolutionary) relationships, and not degree of
similarity. For example, although lizards and
crocodiles look more similar to each other
than to humans, crocodiles are evolutionar-
ily closer to humans because the last com-
mon crocodile-human ancestor was more re-
cent than the last common crocodile–lizard an-
cestor. Similarly, the lysozyme protein of the
colobus monkey exhibits 14 amino acid differ-
ences when compared to either the human or
the baboon lysozyme protein (Stewart et al.,
1987), even though humans diverged from

the baboon-colobus monkey lineage almost
25 million years ago, whereas baboons and
colobus monkeys diverged less than 15 mil-
lion years ago (Sterner et al., 2006). Clearly,
degree of sequence similarity does not equate
with degree of evolutionary relationship.

A typical phylogenetic analysis of protein
sequence data involves five distinct steps: (a)
data collection, (b) inference of homology, (c)
sequence alignment, (d) alignment trimming,
and (e) phylogenetic analysis. Although this
unit concentrates only on the last step, the first
four steps are critical to accurate inference and
are thus also worthy of brief discussion.

Data collection
The sources of protein sequence data used

for phylogenetic analysis are very diverse. For
example, data may be generated via PCR,
cloning, and DNA sequencing of a partic-
ular locus (or loci) across several species
(Murphy et al., 2001; Rokas et al., 2002; James
et al., 2006) or a particular gene family across
a genome (Garcia-Fernandez and Holland,
1994) and then translated into amino acid se-
quences. Alternatively, protein sequence data
may be collected from high-throughput DNA
sequencing experiments, such as EST- and
RNA-sequencing (Dunn et al., 2008; Hittinger
et al., 2010), or from whole-genome data
(Rokas et al., 2003; Ciccarelli et al., 2006;
Fitzpatrick et al., 2006).
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Homology inference
Virtually every phylogenetic analysis of

molecular data assumes that the proteins un-
der study are homologous; that is, every anal-
ysis assumes that all proteins studied are re-
lated by descent to the same ancestral protein.
It is only after homologs have been inferred
(or assumed) that phylogenetic analysis can be
performed. Depending on the question asked,
homolog inference can take many forms. For
example, in studies aimed at understanding
the evolution of a certain gene family, ho-
molog inference is typically performed by con-
ducting similarity search analyses with local
alignment search algorithms, such as BLAST

(UNIT 19.3). Alternatively, in studies focused on
reconstructing species histories from gene his-
tories, homology inference requires inference
of orthologs (homologs that have originated
via speciation) using more complex search
strategies (Remm et al., 2001; Li et al., 2003;
Wall et al., 2003; Alexeyenko et al., 2006;
Kuzniar et al., 2008; Salichos and Rokas,
2011).

Sequence alignment
Once the set of homologous proteins

has been identified, sequences are typically
aligned globally, that is, across their en-
tire length, to construct a multiple sequence
alignment (MSA). In contrast to local align-
ment search algorithms like BLAST (UNIT 19.3),
where the objective is the accurate identifica-
tion of homologs, MSA algorithms focus on
accurately aligning all the individual amino
acids across all the sequences. The industry
classic for MSA is the CLUSTAL family of pro-
grams (Larkin et al., 2007). However, in recent
years, a new generation of much faster and
much more accurate programs, such as MAFFT

(Katoh et al., 2002; Katoh and Toh, 2008), T-

COFFEE (Notredame et al., 2000), and PRANK

(Loytynoja and Goldman, 2008, 2010) have
been developed.

Alignment trimming
MSAs constructed for many proteins con-

tain regions that are aligned poorly. In sev-
eral cases, removal of such poorly aligned
regions has been shown to improve phylo-
genetic inference (Talavera and Castresana,
2007), which has resulted in the common prac-
tice of “trimming” such poorly aligned regions
from protein MSAs prior to phylogenetic in-
ference. Popular programs for MSA trimming
include G-BLOCKS (Castresana, 2000) and TRI-

MAL (Capella-Gutierrez et al., 2009).

BRIEF INTRODUCTION TO
PHYLOGENETIC ANALYSIS

Once a set of protein sequences has been
aligned, the resulting MSA can be entered
directly into a phylogenetic analysis. There
are several different methods and protocols
for molecular phylogenetic analysis (Swof-
ford et al., 1996; Li, 1997; Kitching et al.,
1998; Page and Holmes, 1998; Nei and Kumar,
2000; Huelsenbeck et al., 2001; Felsenstein,
2003). This abundance of methods means that
a novice user will have to make numerous de-
cisions and choices at several different steps
and levels during analysis, which may vary
from one data set to another.

The aim of any phylogenetic analysis is to
identify which tree, out of all possible trees,
best estimates the true evolutionary history
of the protein sequence data analyzed. At the
most fundamental level, this estimation of phy-
logenetic relationships involves two decisions.
The first decision is which optimality criterion
should be used. Given a set of alternative phy-
logenetic trees, the optimality criterion allows
the user to decide which tree explains or fits the
data better. There are several different optimal-
ity criteria including, but not limited to, maxi-
mum likelihood, Bayesian inference, and par-
simony (for detailed descriptions of these and
other optimality criteria see Swofford et al.,
1996; Huelsenbeck et al., 2001). For example,
under the parsimony optimality criterion, the
best phylogenetic tree is the one that requires
the smallest number of evolutionary changes.

The second decision is the choice of search
strategy for exploration of tree space (for a
detailed, but remarkably lucid, description of
the different search strategies see Swofford
et al., 1996). It so happens that one cannot
typically estimate the best tree among all pos-
sible trees for a set of protein sequences, for
two reasons. First, because the number of pos-
sible trees grows exponentially with the num-
ber of sequences, the numbers of alternative
trees for even small numbers of sequences are
extremely large. For example, the number of
different phylogenetic trees that can depict the
evolutionary relationships of 50 sequences is
nearly as large as the number of atoms in the
known universe (Stamatakis et al., 2007). Sec-
ond, it has been proven that efficient solutions
to the computational problem of finding the
best phylogenetic tree do not exist (Day et al.,
1986; Chor and Tuller, 2005), and search of
the near-entire tree space is required for ac-
curate identification of the best tree. Because
exhaustive evaluation of such large numbers
of trees is unfeasible for data sets that contain
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a dozen sequences or more, phylogeneticists
have devised a number of different heuristic
search strategies for identifying the best tree.
Although these heuristic search strategies are
very accurate and much faster than an exhaus-
tive search, they are not guaranteed to find the
best tree.

The standard practice in molecular phy-
logenetics is to analyze each data set using
several different optimality criteria (maximum
likelihood, Bayesian inference, and parsimony
are the three most popular). Selection of a par-
ticular search strategy is typically determined
by computational feasibility considerations.
Exhaustive searches on data sets with more
than a dozen sequences are still prohibitively
time-consuming irrespective of which opti-
mality criterion is used; however, it is now
customary to use the most rigorous heuristic
search strategies available on data sets con-
taining hundreds or thousands of sequences.
Once the user has chosen which optimality
criterion and search strategy to employ on a
given data set, a series of trees is generated and
evaluated, always keeping track of the ‘best’
tree(s) examined in the course of the search of
tree space. Once the search reaches the point
where a better tree cannot be found, the search
ends, and the ‘best’ tree becomes the best es-
timate of the evolutionary history of the data
set analyzed.

As with any other type of statistical anal-
ysis, phylogenetic analysis allows for many
different options and many different ways to
analyze protein sequence data. This unit de-
scribes how to perform a set of standard phy-
logenetic analyses on protein sequence data
using the RAXML program (Stamatakis, 2006;
Stamatakis et al., 2005, 2008), and how to in-
terpret the results. All analyses described here
use the maximum likelihood optimality crite-
rion and a specific search strategy (see below),
both of which are state-of-the-art and highly
accurate. Nevertheless, depending on the data
analyzed and the question(s) asked, the reader
should be aware that publication of phyloge-
netic trees in most journals typically requires
several different analyses using several differ-
ent programs. It is important to demonstrate
agreement in results obtained from applica-
tion of different optimality criteria and from
several measures of robustness of inference.

Phylogenetic analysis using the
maximum likelihood optimality criterion

The concept of likelihood has a long tra-
dition in the field of statistical inference and
has many applications in biological research

(Edwards, 1992). Briefly, in the context of phy-
logenetic analysis, the maximum likelihood
optimality criterion states that the phyloge-
netic tree that makes a given sequence data
set most likely constitutes the maximum like-
lihood estimate of the phylogeny and is the pre-
ferred explanation (Page and Holmes, 1998).
Formally, the likelihood score LD of a se-
quence data set D for phylogenetic hypothesis
H can be estimated by calculating the proba-
bility of D given H, or LD = Pr(D|H). It should
be noted that H does not only correspond to
the phylogenetic tree but also to the proba-
bilistic model of sequence evolution used in
phylogenetic reconstruction. Importantly, the
likelihood criterion not only enables us to di-
rectly estimate the parameters in the model of
sequence evolution, but also to identify their
optimal values for the data set analyzed (the
optimal values are the ones that maximize the
likelihood).

The model of sequence evolution involves
several parameters that describe how the se-
quences in a given data set evolve, such as
the rates of substitution between amino acids,
the frequencies of amino acids, and the het-
erogeneity in rate of evolution across sites of
the MSA. The overwhelming majority of pro-
tein sequence phylogenetic analyses use em-
pirically derived amino acid substitution ma-
trices, whose rates are fixed to specific values
estimated from large numbers of real protein
MSAs (Whelan et al., 2001). For example, the
RTREV substitution matrix is derived from
virally-encoded amino acid data (Dimmic
et al., 2002), whereas CPREV is derived from
chloroplast-encoded amino acid data (Adachi
et al., 2000). In addition to the chosen sub-
stitution matrix, the user can typically decide
whether to use in phylogenetic estimation the
empirical frequencies of the amino acids in the
data set (or the ones calculated during matrix
construction), as well as whether to allow for
any variation in the rate of evolution across
sites of the protein MSA. Most proteins show
substantial heterogeneity in the rate of evo-
lution across their sequence (sites critical to
function tend to be highly conserved, whereas
others tend to be much more variable), so ex-
plicitly accounting for this rate heterogeneity
among sites in the specification of the model
of sequence evolution is generally a very good
idea. One standard and very popular approach
for incorporating rate heterogeneity among
sites into the phylogenetic analysis uses the
gamma distribution to approximate the distri-
bution of rates in a protein MSA (Yang, 1996).
This distribution is very suitable for this task
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because, depending on the value of its shape
parameter α, it can be either L-shaped (ap-
propriate for MSAs that exhibit extreme rate
heterogeneity) or bell-shaped (appropriate for
MSAs that exhibit minor rate heterogeneity).

The RAXML program
The RAXML (Randomized Axelerated Max-

imum Likelihood) program has been devel-
oped to perform both sequential (on a single
processor) and parallel (on multiple proces-
sors) phylogenetic analysis using the maxi-
mum likelihood optimality criterion. Histori-
cally, RAXML stems from the FASTDNAML pro-
gram (Olsen et al., 1994), which in turn stems
from the DNAML program (Felsenstein, 1993).
Although RAXML’s design emphasis is on com-
putationally efficient and biologically accurate
analysis of very large data sets, it is also appro-
priate for and amenable to the analysis of data
sets of any size. RAXML can use a variety of
different character sets, including nucleotide,
amino acid, binary, and multi-state character
state data.

Versions of the RAXML program are avail-
able for the Unix/Linux, Mac, and Windows
operating systems (from http://wwwkramer.
in.tum.de/exelixis/software.html; Stamatakis,
2006), as well as from two Web servers
(from the Swiss Institute of Bioinformatics
at http://phylobench.vital-it.ch/raxml-bb/, and
from the CIPRES Science Gateway at http://
www.phylo.org/portal2/; Stamatakis et al.,
2008). The stand-alone version is command-
line based, but Graphical User Interface fronts
are also available (from http://sourceforge.net/
projects/raxmlgui/ and http://sourceforge.
net/projects/wxraxml/).

The RAXML search strategy. The first step of
the search strategy employed by RAXML is the
generation of a starting tree. This starting tree
is constructed by adding the sequences one
by one in random order, and identifying their
optimal location on the tree under the parsi-
mony optimality criterion (Stamatakis et al.,
2005). The random order in which sequences
are added is likely to generate several differ-
ent starting trees every time a new analysis is

regraft the pruned branch
of the one subtree to all
possible locations of 
the second subtree that 
are <  branches away

break a branch,
separate the subtrees

A B

CD

optimize only the four
newly created branches

repeat procedure for
all possible subtrees

Figure 19.11.1 The lazy subtree rearrangement (LSR) tree search strategy.
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run (especially for data sets with more than
a few sequences), which allows better explo-
ration of the tree space. If multiple analyses
using different starting trees all converge on
the same best tree, then confidence that this
is the true best tree increases. The second
step of the search strategy involves a method
known as lazy subtree rearrangement or LSR
(Stamatakis et al., 2005; Schmidt and von Hae-
seler 2009), which is summarized in Figure
19.11.1. Briefly, under LSR, all possible sub-
trees of a tree are clipped and reinserted at all
possible locations as long as the number of
branches separating the clipped and insertion
points is smaller than N branches. RAXML esti-
mates the appropriate N value for a given data
set automatically, but one can also run the pro-
gram with any fixed value. The LSR method
is first applied on the starting tree, and sub-
sequently multiple times on the currently best
tree as the search continues, until no better tree
is found.

PHYLOGENETIC ANALYSIS
USING THE RAXML PROGRAM

The RAXML command line interface
Irrespective of operating system used, the

typical way to perform phylogenetic analysis
with RAXML is using the command line. Invok-
ing the RAXML command by typing

RAXMLHPC -h

and hitting Enter at the terminal cursor
(typically indicated by the >, $, or % signs)
prints the program version, command line
options, and author and contact information.

Like most command line programs, RAXML

can be executed by typing the command invok-
ing the program (i.e.,RAXMLHPC) followed by
a series of options. In the example above, the
-h option displays a long help message that
describes the multitude of options available via
the program. The user can use these options to
specify the data to be analyzed as well as to
set and control the different parameters of the
analysis.

Input format for protein alignments
The RAXML program accepts protein

sequence alignments in the PHYLIP format.
An example alignment of part of the mi-
tochondrial cytochrome oxidase subunit II
alignment in the PHYLIP format is shown in
Figure 19.11.2 (it can be downloaded from
http://wwwkramer.in.tum.de/exelixis/hands-
on/protein.phy and is also available as a

supplementary file of this unit). Generation
of PHYLIP formatted alignments is a standard
feature of many different alignment programs
and sequence editors (e.g., http://www-
bimas.cit.nih.gov/molbio/readseq/).

Constructing a maximum likelihood tree
with RAXML

We can set a simple maximum likelihood
analysis in RAXML by typing:

RAXMLHPC -s protein.phy -n A1
-m PROTGAMMAWAG

The option -s protein.phy specifies
the sequence data file to be analyzed. The op-
tion -n A1 specifies the file name appendix
that will be added to all the output files pro-
duced by RAXML in this run, which will be
in the format RAXML filename.A1. Al-
though RAXML will not overwrite previous re-
sults (the second time you use the same file
name appendix the program will not run any
analysis but will ask you to provide a different
appendix), it is best practice to use a differ-
ent file name appendix for every run. The op-
tion-m PROTGAMMAWAG specifies to RAXML

three parameters associated with the model of
sequence evolution employed: first, that we
are using protein data (the PROT part); sec-
ond, that we are accounting for rate hetero-
geneity among sites in our alignment by using
the gamma distribution (the GAMMA part); and
third, that we are employing the Whelan and
Goldman (Whelan and Goldman, 2001) amino
acid substitution matrix (the WAG part).

If we wanted to choose a different amino
acid substitution matrix (e.g., the RTREV ma-
trix), it would be necessary to simply replace
the WAG part of the -m option with RTREV.
To use empirical base frequencies drawn from
the alignment (rather than use the pre-defined
base frequencies that come with the matrix),
all that is needed is to add the letter F to the
-m option so that the RAXML command now
looks like:

RAXMLHPC -s protein.phy -n A2
-m PROTGAMMARTREVF

There are a few different ways of de-
ciding what amino acid substitution ma-
trix should be used. As discussed above,
these empirical amino acid substitution ma-
trices are derived from several different sets
of protein MSAs. One reasonable choice
is to use a model that derives from data
that are most similar to the data at hand.
For example, for our mitochondrial sequence
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10 50

Cow          MAYPMQLGFQ DATSPIMEEL LHFHDHTLMI VFLISSLVLY IISLMLTTKL

Carp         MAHPTQLGFK DAAMPVMEEL LHFHDHALMI VLLISTLVLY IITAMVSTKL

Chicken      MANHSQLGFQ DASSPIMEEL VEFHDHALMV ALAICSLVLY LLTLMLMEKL

Human        MAHAAQVGLQ DATSPIMEEL ITFHDHALMI IFLICFLVLY ALFLTLTTKL

Loach        MAHPTQLGFQ DAASPVMEEL LHFHDHALMI VFLISALVLY VIITTVSTKL

Mouse        MAYPFQLGLQ DATSPIMEEL MNFHDHTLMI VFLISSLVLY IISLMLTTKL

Rat          MAYPFQLGLQ DATSPIMEEL TNFHDHTLMI VFLISSLVLY IISLMLTTKL

Seal         MAYPLQMGLQ DATSPIMEEL LHFHDHTLMI VFLISSLVLY IISLMLTTKL

Whale        MAYPFQLGFQ DAASPIMEEL LHFHDHTLMI VFLISSLVLY IITLMLTTKL

Frog         MAHPSQLGFQ DAASPIMEEL LHFHDHTLMA VFLISTLVLY IITIMMTTKL

Figure 19.11.2 An example alignment of part of the mitochondrial cytochrome oxidase subunit
II alignment in the PHYLIP format.

alignment, we could choose MTREV (Adachi
and Hasegawa, 1996), an empirical substi-
tution matrix estimated from the complete
mitochondrial sequence data of 20 vertebrate
species. A much more thorough, but com-
putationally much more demanding approach
is to use the program PROTTEST (Abascal et
al., 2005), which calculates several different
statistics to identify which model best fits the
data. PROTTEST can be run online on a protein
MSA from http://darwin.uvigo.es/software/
prottest server.html, although a stand-alone
version of the program is also available (for
a detailed theoretical and practical guide on
the program see Posada, 2009). Finally, in-
stead of using one of the standard models avail-
able, the user can actually estimate the amino
acid model based on the amino acid data at
hand, by replacing the WAG part with GTR, and
typing:

RAXMLHPC -s protein.phy -n A3
-m PROTGAMMAGTR

Note, however, that one should employ this
option only on protein alignments that con-
tain thousands of amino acid columns, be-
cause only those contain sufficient data to
estimate all possible amino acid substitution
parameters.

As mentioned above, RAXML generates a
starting tree by adding the sequences one by
one in random order and inferring the best
starting tree using the parsimony optimality
criterion. Thus, each time RAXML is run, a dif-
ferent starting tree is generated. Because, like
all heuristic search strategies, the LSR search
strategy employed by RAXML is not guaran-
teed to find the best tree, it is customary to
conduct multiple searches for the best tree.
If all searches that begin from different start-

ing trees converge on the same best tree, then
the researcher’s confidence that the inferred
tree is the best increases. To conduct multiple
searches for the best tree, it is necessary to add
the option -# n, where n is the desired num-
ber of multiple searches to perform. Thus, if
the goal is to perform 10 searches, the RAXML

command should look like:

RAXMLHPC -s protein.phy -n A4
-m PROTGAMMAWAGF -# 10

Visualizing the maximum likelihood tree
Examination of the contents of the direc-

tory where the different analyses were run
shows that RAXML generated several different
files (the number and type of files generated
will vary depending on the option settings
specified) from the several different analyses.
These files provide detailed information
and results about the analysis (e.g., the
RAXML info.A1 file), the maximum likeli-
hood tree (e.g., the RAXML bestTree.A1
file), the starting parsimony tree (e.g., the
RAXML parsimonyTree.A1 file), etc. A
full description of the contents of each file
can be found in the program’s manual (avail-
able from http://wwwkramer.in.tum.de/
exelixis/oldPage/RAxML-Manual.7.0.4.pdf).
Typically, the most useful output files are the
tree files, which are written in the NEWICK

format (a full description of the format can be
found at http://evolution.genetics.washington.
edu/phylip/newicktree.html), and can be
opened for viewing in any of several different
tree visualization programs. For exam-
ple, Figure 19.11.3 shows a screenshot of
RAXML bestTree.A1 file when opened
with the tree visualization program FIGTREE

(http://tree.bio.ed.ac.uk/software/figtree/).
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Figure 19.11.3 Screenshot of the (unrooted) maximum likelihood tree in the FIGTREE program. Branch lengths are in
substitutions per site.

Rooting the phylogenetic tree
Phylogenetic trees can be either rooted or

unrooted. Rooted phylogenetic trees have di-
rection, since all lineages depicted on the tree
originate from the same common ancestor,
which is also known as the root of the tree.
In contrast, unrooted trees lack a root and,
consequently, do not inform us about the di-
rection of evolution. Examples of rooted and
unrooted phylogenetic trees are shown in Fig-
ure 19.11.4.

Although the majority of biologists want
to obtain and work with rooted phylogenetic
trees, the overwhelming majority of molecu-
lar phylogenetic programs produce unrooted
phylogenetic trees. To produce a rooted phy-
logenetic tree, the user must include in the set
of sequences to be analyzed a sequence from
a species that is known, based on independent
evidence (e.g., from paleontological data), to
have diverged prior to the origin of our set
of sequences. Such a sequence is known as
an outgroup. In RAXML, one can specify an
outgroup by adding the -o sequence op-

tion, where sequence is the name of one (or
more) of the sequences in the multiple align-
ment that we want to use as the outgroup. Thus,
if we want to use the Carp sequence as the
outgroup, the RAXML command should look
like:

RAXMLHPC -s protein.phy -n A5
-m PROTGAMMAWAGF -o Carp

The outgroup can also consist of more than
one sequence. For example, in our data set, one
may want to root the phylogenetic tree using
the two fish sequences (Carp and Loach)
as the outgroup (as shown in panel B of Fig.
19.11.4), in which case the RAXML command
should look like:

RAXMLHPC -s protein.phy -n A6
-m PROTGAMMAWAGF -o Carp,Loach

Note that if the sequences specified as the
outgroup do not form a monophyletic group
(i.e., a group of sequences descended from the
same common ancestral sequence not shared
with any other group of sequences), RAXML
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A

B

Figure 19.11.4 Examples of an unrooted (A) and a rooted (B) phylogenetic tree for the example
data set. The unrooted tree on the top panel, if rooted on the branch leading to the Carp and
Loach sequences, corresponds to the rooted tree on the bottom. Note that in the unrooted tree
neighboring sequences are not necessarily closely related.

will be unable to place all of them as the
outgroup. In this event, RAXML will print a
warning in the RAXML information file (in this
example, this is the RAXML info.A6 file)
and proceed to root the phylogeny using the
first of the sequences specified in the -o op-
tion as the outgroup.

Assessing robustness of inference
The standard statistical approach for as-

sessing robustness in the inference of phylo-

genetic relationships uses a technique known
as bootstrapping (Felsenstein, 1985). In boot-
strapping, one generates multiple data sets that
have the same number of alignment columns
as the original data set by randomly sam-
pling the original alignment columns with re-
placement. Each bootstrap replicate data set is
then analyzed in exactly the same way as the
original data set, which results in the produc-
tion of a maximum likelihood tree from each
bootstrap replicate data set. The frequency of
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occurrence of any given grouping on the set of
bootstrap trees (which is known as the boot-
strap support value) signifies the measure of
support for that particular grouping in our data
(Soltis and Soltis, 2003).

To conduct a bootstrap analysis in RAXML,
it is necessary to specify two additional op-
tions. The first is the -b n option, where n
can be any positive integer, and which specifies
the random number seed required for the boot-
strap analysis. Using the same random seed
number in different runs of the same data set
will result in the generation of identical boot-
strap replicate data sets, so it may be desir-
able to pick a new random seed number every
time an analysis is run. The second option is
the -# n option, where n can be any posi-
tive integer, and which specifies the number
of bootstrap replicates to be performed. Af-
ter specifying these two options, the RAXML

command should look like:

RAXMLHPC -s protein.phy -n A7
-m PROTGAMMAWAGF --b 0123 -#
100

The typical number of bootstrap replicates
performed varies greatly between studies, and
can range from a hundred to thousands of repli-
cates. Because the number of bootstrap repli-
cates required to obtain bootstrap support val-
ues of high quality varies with the type and size
of data set analyzed (Pattengale et al., 2010),
RAXML allows the user to automatically esti-
mate when an appropriate number of bootstrap
replicates has been performed through the use
of several different stopping criteria. The logic
underlying all these criteria is the same; after
every 50 bootstrap replicates, the program per-
forms 100 random splits of the bootstrap repli-
cate set into two halves and computes statis-
tics, which vary depending on the criterion
implemented. For example, the frequency-
based criterion, which is specified by setting
the -# option to autoFC, determines whether
enough replicates have been performed by cal-
culating the Pearson and Sierk correlation co-
efficient (2005) in the two halves from the
100 splits. Bootstrapping stops if there are at
least 99 splits whose halves show a correlation
coefficient greater than 0.99. Thus, the RAXML

command implementing the frequency-based
stopping criterion should look like:

RAXMLHPC -s protein.phy -n A8
-m PROTGAMMAWAGF --b 0123 -#
autoFC

Running this command, RAXML calculates
that 800 bootstrap replicates are sufficient for

high-quality bootstrap values and saves the re-
sults in the RAXML bootstrap.A8 file (the
final number of bootstrap replicates will vary
between runs, even if the same random seed is
used, because the statistics are calculated on
random splits).

It is customary to visualize bootstrap sup-
port values on the maximum likelihood tree.
Therefore, we can use the maximum like-
lihood tree generated from the A4 analy-
sis (see above), which was saved in the
RAXML bestTree.A4 file, as the tree on
which to display the bootstrap support values.
We can instruct RAXML to draw bootstrap val-
ues on the maximum likelihood tree using the
following command:

RAXMLHPC -n A9 -m
PROTGAMMAWAGF -f b -
t RAXML bestTree.A4 -z
RAXML bootstrap.A8

Here, the -f b option specifies the anal-
ysis to be performed (draw bootstrap sup-
port values on a given tree), the -t RAXML
bestTree.A4 option specifies the tree that
we want the values depicted on, whereas the
-z RAXML bootstrap.A8 option speci-
fies the file containing the trees generated via
bootstrapping.

Once the command is executed, the tree
containing the bootstrap support values drawn
on the maximum likelihood tree will be saved
in the RAXML bipartitions.A9 file
(Fig. 19.11.5). One can also use the set of
trees produced from the bootstrap replicates
to construct various kinds of consensus trees
that summarize their agreements. For exam-
ple, strict consensus trees contain only those
groupings present in all bootstrap replicate
trees, whereas majority rule consensus trees
contain only those groupings that are present
in more than half of the bootstrap replicate
trees. Consensus tree construction in RAXML

uses the -J option. For example by setting -J
STRICT, one can construct a strict consensus
tree (Fig. 19.11.5):

RAXMLHPC -n A10 -m PROTGAM-
MAWAGF -J STRICT -z
RAXML bootstrap.A8

whereas by setting -J MR one can construct
a majority rule consensus tree (Fig. 19.11.5):

RAXMLHPC -n A11 -m
PROTGAMMAWAGF -J MR -z
RAXML bootstrap.A8

Standard bootstrapping can be computa-
tionally very demanding, especially for larger
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A B C

Figure 19.11.5 Different ways of visualizing bootstrap support values on phylogenetic trees. (A) Bootstrap support
values depicted on the maximum likelihood tree. (B) The strict consensus tree, which is completely unresolved because
none of the groupings was present in all bootstrap replicate trees. (C) Bootstrap support values depicted on the majority
rule tree.

data sets. To facilitate faster analysis, the
RAXML program also contains a rapid boot-
strapping algorithm that is at least an order of
magnitude faster than the standard one, while
similarly accurate (Stamatakis et al., 2008). To
run an analysis using this algorithm, the user
need simply change the -b n option to the
-x n option, where n can be any positive in-
teger. After replacing the -b nwith the -x n
option, the RAXML command should look like:

RAXMLHPC -s protein.phy -n A12
-m PROTGAMMAWAGF --x 0123 -#
100

or, if the frequency-based stopping criterion is
to be implemented, it should look like:

RAXMLHPC -s protein.phy -n A13
-m PROTGAMMAWAGF --x 0123 -#
autoFC

For comparison, in a standard 2.3-GHz pro-
cessor, the 100 bootstrap replicates performed
for the A7 analysis took ∼266 sec to run,
whereas the 100 rapid bootstrap replicates per-
formed for the A12 analysis took ∼74 sec.

One useful feature of the program is that
it allows the user to simultaneously perform
maximum likelihood and rapid bootstrapping
analysis by adding the -f a option, so that
the RAXML command looks like:

RAXMLHPC --f a -s protein.phy
-n A14 -m PROTGAMMAWAGF --x
0123 -# 100

Execution of the command will generate
the maximum likelihood tree file (RAXML
bestTree.A14) and the bootstrap replicate
tree file (RAXML bootstrap.A14), as well
as the tree file containing the bootstrap support
values drawn on the maximum likelihood tree
(RAXML bipartitions.A14).

Comparing different phylogenetic trees
Researchers often want to test directly dif-

ferent phylogenetic hypotheses. For example,
one frequent question is whether a phylo-
genetic tree obtained from a given protein
alignment is significantly different from the
traditional phylogeny. Such questions can be
addressed by performing tests that evaluate
whether the likelihood scores of different phy-
logenetic trees are significantly different. One
such very useful and frequently used test is
the Shimodaira-Hasegawa test (or SH test),
which examines whether the maximum like-
lihood tree is significantly better than user-
supplied phylogenetic trees (Shimodaira and
Hasegawa, 1999).

For example, examination of the maximum
likelihood tree estimated from our data set
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(Fig. 19.11.3) shows that the human sequence
groups with the chicken sequence and not with
the other mammal sequences, as one would
expect based on the vertebrate phylogeny. In
this case, we can use the SH test to evaluate
whether the maximum likelihood tree is sig-
nificantly better than the traditional vertebrate
tree using the following RAXML command:

RAXMLHPC -f h -s protein.phy
-n A15 -m PROTGAMMAWAGF -t
RAXML bestTree.A4 -z verte-
brate.tree

In this command, the ‘-f h’ option
specifies that we want to perform an SH
test. Similar to several previous commands,
the maximum likelihood tree is specified
by the -t RAXML bestTree.A4 option,
and the vertebrate tree by the -z verte-
brate.tree option. This latter file can be
created by writing the vertebrate phylogeny
for the 10 sequences used in this data set in the
NEWICK format:

(((((Human,(Mouse,Rat)),
((Cow,Whale),Seal)),Chicken),
Frog),Carp,Loach);

The analysis produces a single output file
(RAXML info.A15) that reports the results
of the SH test in its last few lines:

Model optimization, best Tree:
−411.163389
Found 1 trees in File verte-
brate.tree

Tree: 0 Likelihood:
−423.777863 D(LH): −12.614474
SD: 6.714754

Significantly Worse: No (5%),
No (2%), No (1%)

The best Tree: −411.163389
text reposrts the likelihood score (after
logarithmic transformation) of the best
tree, whereas the Tree: 0 Likeli-
hood: −423.777863 text reports the
likelihood score of the vertebrate tree. The
D(LH): −12.614474 SD: 6.714754
text reports the difference D(LH) in the
likelihood scores between the two trees and
its standard deviation SD. Finally, the last line
reports whether this difference in likelihood
between the best tree and the vertebrate
tree is significant at the 5%, 2%, and 1%
level. Given that the reported result is No
for all three levels of significance, it can
be concluded that the maximum likelihood

phylogenetic tree estimated from this data set
does not significantly differ from the standard
vertebrate phylogeny.

Analyzing multiple data sets
Phylogenies based on single proteins are

often unreliable or lack the phylogenetic sig-
nal necessary for successfully inferring phy-
logenies (Rokas et al., 2003). Consequently,
in recent years, researchers have been increas-
ingly analyzing multiple data sets. If the user
constructs a single data matrix that contains
the alignments of both proteins and provides
RAXML with information about the boundaries
of the different data sets, such analyses of mul-
tiple data sets can be performed in RAXML.
Importantly, RAXML allows the user to spec-
ify different models of sequence evolution for
each data set and optimizes parameters sepa-
rately for each data set.

For example, let us hypothesize that our ex-
ample data set is actually a composite of two
different protein alignments, with amino acid
columns1-30 corresponding to protein A and
amino acid columns 31-50 corresponding to
protein B. We can inform RAXML that our se-
quence file is a composite of two different data
sets by creating a plain text file (let us name it
partition.txt) that contains the follow-
ing text:

WAGF, proteinA = 1-30
RTREVF, proteinB = 31-50

In this file, each line describes each pro-
tein in the data set. The first part of each line
(WAGF in the first and RTREVF in the second)
describes the amino acid substitution matrix
we have chosen to use for each of the proteins.
The second part (proteinA = 1-30 in the
first and proteinB = 31-50 in the sec-
ond) describes the names of the two proteins,
which are arbitrary, as well as the multiple
sequence alignment columns they occupy (the
first 30 amino acid columns are from the align-
ment of protein A, whereas the last twenty for
the alignment of protein B). Somewhat con-
fusingly, executing a multiple data set anal-
ysis in RAXML requires that we also specify
the model of sequence evolution, the --m op-
tion. Although the models of amino acid evo-
lution specified in the partition.txt file
take precedence over the model specified via
the --m option, this option is still necessary
and useful in that it allows us to specify if we
want to account for rate heterogeneity among
sites in the two proteins. Thus, by setting -
-m PROTGAMMAGTR, the RAXML command
should look like:
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RAXMLHPC -s protein.phy -n
A16 -m PROTGAMMAGTR -q parti-
tion.txt

Using this command, RAXML will use the
WAG model for protein A and the RTREV
model for protein B, as specified in the
partition.txt file (and ignore the GTR
model specified via the --m option). It will
also use the empirical amino acid frequen-
cies of each protein (because we specified
so in the partition.txt file), and es-
timate the degree of rate heterogeneity in-
dependently for each protein (because we
specified so in the -m option). Examination
of the RAXML output indicates that the pro-
gram analyzes each protein separately, but
produces a single maximum likelihood tree
(RAXML bestTree.A16) that summarizes
the results from the analysis of the two
proteins.

CONCLUDING REMARKS
The theory and practice of phylogenetic

analysis of sequence data has blossomed in
the last three decades. As such, any proto-
col aimed at describing how to perform a
set of analyses is bound to serve as an in-
troduction to this rather complex field, rather
than as a full description of the state-of-the-
art methods of analysis. Readers interested
in delving deeper into the theory and prac-
tice of molecular phylogenetics are advised
to consult any of the several excellent and
more in depth descriptions of the theory and
practice of phylogenetic inference (Swofford
et al., 1996; Page and Holmes, 1998; Nei and
Kumar, 2000; Felsenstein, 2003; Salemi et al.,
2009), as well as explore several different op-
timality criteria and programs for phyloge-
netic analysis (Swofford, 2002; Zwickl, 2006;
Drummond and Rambaut, 2007; Guindon
et al., 2010). A remarkably up to date
list of phylogeny programs can be found
at http://evolution.genetics.washington.edu/
phylip/software.html.

LITERATURE CITED
Abascal, F., Zardoya, R., and Posada, D. 2005.

Prottest: Selection of best-fit models of protein
evolution. Bioinformatics 21:2104-2105.

Adachi, J. and Hasegawa, M. 1996. Model of amino
acid substitution in proteins encoded by mito-
chondrial DNA. J. Mol. Evol. 42:459-468.

Adachi, J., Waddell, P.J., Martin, W., and Hasegawa,
M. 2000. Plastid genome phylogeny and a model
of amino acid substitution for proteins encoded
by chloroplast DNA. J. Mol. Evol. 50:348-358.

Alexeyenko, A., Tamas, I., Liu, G., and Sonnham-
mer, E.L. 2006. Automatic clustering of or-

thologs and inparalogs shared by multiple pro-
teomes. Bioinformatics 22:E9-E15.

Capella-Gutierrez, S., Silla-Martinez, J.M., and Ga-
baldon, T. 2009. trimAl: A tool for automated
alignment trimming in large-scale phylogenetic
analyses. Bioinformatics 25:1972-1973.

Castresana, J. 2000. Selection of conserved blocks
from multiple alignments for their use in phylo-
genetic analysis. Mol. Biol. Evol. 17:540-552.

Chor, B. and Tuller, T. 2005. Maximum likelihood
of evolutionary trees: Hardness and approxima-
tion. Bioinformatics 21:97-106.

Ciccarelli, F.D., Doerks, T., von Mering, C.,
Creevey, C.J., Snel, B., and Bork, P. 2006. To-
ward automatic reconstruction of a highly re-
solved tree of life. Science 311:1283-1287.

Day, W.H.E., Johnson, D.S., and Sankoff, D.
1986. The computational complexity of infer-
ring rooted phylogenies by parsimony. Math.
Biosci. 81:33-42.

Dimmic, M.W., Rest, J.S., Mindell, D.P., and Gold-
stein, R.A. 2002. rtREV: An amino acid sub-
stitution matrix for inference of retrovirus and
reverse transcriptase phylogeny. J. Mol. Evol.
55:65-73.

Drummond, A.J. and Rambaut, A. 2007. BEAST:
Bayesian evolutionary analysis by sampling
trees. BMC Evol. Biol. 7:214.

Dunn, C.W., Hejnol, A., Matus, D.Q., Pang, K.,
Browne, W.E., Smith, S.A., Seaver, E., Rouse,
G.W., Obst, M., Edgecombe, G.D., Sorensen,
M.V., Haddock, S.H., Schmidt-Rhaesa, A.,
Okusu, A., Kristensen, R.M., Wheeler, W.C.,
Martindale, M.Q., and Giribet, G. 2008. Broad
phylogenomic sampling improves resolution of
the animal tree of life. Nature 452:745-749.

Edwards, A.W.F. 1992. Likelihood (Expanded Edi-
tion). The John Hopkins University Press,
Baltimore, Maryland.

Felsenstein, J. 1985. Confidence limits on phyloge-
nies: An approach using the bootstrap. Evolution
39:783-791.

Felsenstein, J. 1993. PHYLIP (Phylogeny Infer-
ence Package). Distributed by the Author, De-
partment of Genetics, University of Washington,
Seattle.

Felsenstein, J. 2003. Inferring Phylogenies. Sin-
auer, Sunderland, Massachusetts.

Fitzpatrick, D.A., Logue, M.E., Stajich, J.E., and
Butler, G. 2006. A fungal phylogeny based on
42 complete genomes derived from supertree
and combined gene analysis. BMC Evol. Biol.
6:99.

Garcia-Fernandez, J. and Holland, P.W.H. 1994.
Archetypal organization of the amphioxus Hox
gene cluster. Nature 370:563-566.

Guindon, S., Dufayard, J.F., Lefort, V., Anisimova,
M., Hordijk, W., and Gascuel, O. 2010. New
algorithms and methods to estimate maximum
likelihood phylogenies: assessing the perfor-
mance of PhyML 3.0. Syst. Biol. 59:307-321.

Hittinger, C.T., Johnston, M., Tossberg, J.T., and
Rokas, A. 2010. Leveraging skewed transcript



Informatics for
Molecular
Biologists

19.11.13

Current Protocols in Molecular Biology Supplement 96

abundance by RNA-Seq to increase the genomic
depth of the tree of life. Proc. Natl. Acad. Sci.
U.S.A. 107:1476-1481.

Huelsenbeck, J.P., Ronquist, F., Nielsen, R., and
Bollback, J.P. 2001. Bayesian inference of phy-
logeny and its impact on evolutionary biology.
Science 294:2310-2314.

James, T.Y., Kauff, F., Schoch, C.L., Matheny, P.B.,
Hofstetter, V., Cox, C.J., Celio, G., Gueidan,
C., Fraker, E., Miadlikowska, J., Lumbsch,
H.T., Rauhut, A., Reeb, V., Arnold, A.E.,
Amtoft, A., Stajich, J.E., Hosaka, K., Sung,
G.H., Johnson, D., O’Rourke, B., Crockett, M.,
Binder, M., Curtis, J.M., Slot, J.C., Wang, Z.,
Wilson, A.W., Schussler, A., Longcore, J.E.,
O’Donnell, K., Mozley-Standridge, S., Porter,
D., Letcher, P.M., Powell, M.J., Taylor, J.W.,
White, M.M., Griffith, G.W., Davies, D.R.,
Humber, R.A., Morton, J.B., Sugiyama, J., Ross-
man, A.Y., Rogers, J.D., Pfister, D.H., Hewitt,
D., Hansen, K., Hambleton, S., Shoemaker,
R.A., Kohlmeyer, J., Volkmann-Kohlmeyer, B.,
Spotts, R.A., Serdani, M., Crous, P.W., Hughes,
K.W., Matsuura, K., Langer, E., Langer, G., Un-
tereiner, W.A., Lucking, R., Budel, B., Geiser,
D.M., Aptroot, A., Diederich, P., Schmitt, I.,
Schultz, M., Yahr, R., Hibbett, D.S., Lutzoni,
F., McLaughlin, D.J., Spatafora, J.W., and Vil-
galys, R. 2006. Reconstructing the early evolu-
tion of Fungi using a six-gene phylogeny. Nature
443:818-822.

Katoh, K., and Toh, H. 2008. Recent developments
in the MAFFT multiple sequence alignment pro-
gram. Brief. Bioinformatics 9:286-298.

Katoh, K., Misawa, K., Kuma, K., and Miyata, T.
2002. MAFFT: A novel method for rapid mul-
tiple sequence alignment based on fast Fourier
transform. Nucleic Acids Res. 30:3059-3066.

Kitching, I.J., Forey, P.L., Humphries, C.J., and
Williams, D.M. 1998. Cladistics: The Theory
and Practice of Parsimony Analysis, 2nd Ed.
Oxford University Press, New York.

Kuzniar, A., van Ham, R.C.H.J., Pongor, S., and
Leunissen, J.A.M. 2008. The quest for or-
thologs: Finding the corresponding gene across
genomes. Trends Genet. 24:539-551.

Larkin, M.A., Blackshields, G., Brown, N.P.,
Chenna, R., McGettigan, P.A., McWilliam, H.,
Valentin, F., Wallace, I.M., Wilm, A., Lopez,
R., Thompson, J.D., Gibson, T.J., and Higgins,
D.G. 2007. Clustal W and Clustal X version 2.0.
Bioinformatics 23:2947-2948.

Li, L., Stoeckert, C.J. Jr., and Roos, D.S. 2003.
OrthoMCL: Identification of ortholog groups
for eukaryotic genomes. Genome Res. 13:2178-
2189.

Li, W-H. 1997. Molecular Evolution. Sinauer, Sun-
derland, Massachusetts.

Loytynoja, A. and Goldman, N. 2008. Phylogeny-
aware gap placement prevents errors in sequence
alignment and evolutionary analysis. Science
320:1632-1635.

Loytynoja, A. and Goldman, N. 2010. webPRANK:
A phylogeny-aware multiple sequence aligner

with interactive alignment browser. BMC Bioin-
formatics 11:579.

Murphy, W.J., Eizirik, E., Johnson, W.E., Zhang,
Y.P., Ryder, O.A., and O’Brien, S.J. 2001.
Molecular phylogenetics and the origins of pla-
cental mammals. Nature 409:614-618.

Nei, M. and Kumar, S. 2000. Molecular Evolution
and Phylogenetics. Oxford University Press,
New York.

Notredame, C., Higgins, D.G., and Heringa, J. 2000.
T-Coffee: A novel method for fast and accu-
rate multiple sequence alignment. J. Mol. Biol.
302:205-217.

Olsen, G.J., Matsuda, H., Hagstrom, R., and
Overbeek, R. 1994. Fastdnaml: A tool for
construction of phylogenetic trees of DNA-
sequences using maximum-likelihood. Comput.
Appl. Biosci. 10:41-48.

Page, R.D.M. and Holmes, E.C. 1998. Molecular
Evolution: A Phylogenetic Approach. Blackwell
Science, Malden, Massachusetts.

Pattengale, N.D., Alipour, M., Bininda-Emonds,
O.R.P., Moret, B.M.E., and Stamatakis, A. 2010.
How many bootstrap replicates are necessary? J.
Comput. Biol. 17:337-354.

Pearson, W.R. and Sierk, M.L. 2005. The limits
of protein sequence comparison? Curr. Opin.
Struct. Biol. 15:254-260.

Posada, D. 2009. Selecting models of evolution. In:
The Phylogenetic Handbook: A Practical Ap-
proach to Phylogenetic Analysis and Hypoth-
esis Testing (P. Lemey, M. Salemi, and A.M.
Vandamme, eds.) pp. 345-361. Cambridge Uni-
versity Press, Cambridge.

Remm, M., Storm, C.E., and Sonnhammer, E.L.
2001. Automatic clustering of orthologs and in-
paralogs from pairwise species comparisons. J.
Mol. Biol. 314:1041-1052.

Rokas, A., Nylander, J.A.A., Ronquist, F., and
Stone, G.N. 2002. A maximum likelihood anal-
ysis of eight phylogenetic markers in gall-
wasps (Hymenoptera: Cynipidae): Implications
for insect phylogenetic studies. Mol. Phylo-
genet. Evol. 22:206-219.

Rokas, A., Williams, B.L., King, N., and Carroll,
S.B. 2003. Genome-scale approaches to resolv-
ing incongruence in molecular phylogenies. Na-
ture 425:798-804.

Salemi, M., Vandamme, A-M., and Lemey, P. 2009.
The Phylogenetic Handbook: A Practical Ap-
proach to Phylogenetic Analysis and Hypothe-
sis Testing, 2nd Ed. Cambridge University Press,
Cambridge.

Salichos, L. and Rokas, A. 2011. Evaluating or-
tholog prediction algorithms in a yeast model
clade. PLoS One 6:e18755.

Schmidt, H.A. and von Haeseler, A. 2009. Phy-
logenetic inference using maximum likelihood
methods. In The Phylogenetic Handbook: A
Practical Approach to Phylogenetic Analysis
and Hypothesis Testing (P. Lemey, M. Salemi,
and A.M. Vandamme, eds.) pp. 181-209. Cam-
bridge University Press, Cambridge.



Phylogenetic
Analysis of

Protein Sequence
Using RAXML

19.11.14

Supplement 96 Current Protocols in Molecular Biology

Shimodaira, H. and Hasegawa, M. 1999. Multi-
ple comparisons of log-likelihoods with applica-
tions to phylogenetic inference. Mol. Biol. Evol.
16:1114-1116.

Soltis, P.S. and Soltis, D.E. 2003. Applying the
bootstrap in phylogeny reconstruction. Stat. Sci.
18:256-267.

Stamatakis, A. 2006. RAXML-VI-HPC: Maxi-
mum likelihood-based phylogenetic analyses
with thousands of taxa and mixed models. Bioin-
formatics 22:2688-2690.

Stamatakis, A., Ludwig, T., and Meier, H. 2005.
RAXML-III: A fast program for maximum
likelihood-based inference of large phylogenetic
trees. Bioinformatics 21:456-463.

Stamatakis, A., Blagojevic, F., Nikolopoulos, D.S.,
and Antonopoulos, C.D. 2007. Exploring new
search algorithms and hardware for phylogenet-
ics: RAXML meets the IBM cell. J. VLSI Sig-
nal Process. Syst. Signal Image Video Technol.
48:271-286.

Stamatakis, A., Hoover, P., and Rougemont, J. 2008.
A rapid bootstrap algorithm for the RAXML
Web servers. Syst. Biol. 57:758-771.

Sterner, K.N., Raaum, R.L., Zhang, Y.P., Stewart,
C.B., and Disotell, T.R. 2006. Mitochondrial
data support an odd-nosed colobine clade. Mol.
Phylogenet. Evol. 40:1-7.

Stewart, C.B., Schilling, J.W., and Wilson,
A.C. 1987. Adaptive evolution in the stom-
ach lysozymes of foregut fermenters. Nature
330:401-404.

Swofford, D.L. 2002. PAUP*: Phylogenetic Anal-
ysis Using Parsimony (*and Other Methods).
Sinauer, Sunderland, Massachusetts.

Swofford, D.L., Olsen, G.J., Waddell, P.J., and
Hillis, D.M. 1996. Phylogenetic inference. In
Molecular Systematics (D.M. Hillis, C. Moritz,
and B.K. Mable, eds.) pp. 407-514. Sinauer,
Sunderland, Massachusetts.

Talavera, G. and Castresana, J. 2007. Improve-
ment of phylogenies after removing divergent
and ambiguously aligned blocks from pro-
tein sequence alignments. Syst. Biol. 56:564-
577.

Wall, D.P., Fraser, H.B., and Hirsh, A.E. 2003.
Detecting putative orthologs. Bioinformatics
19:1710-1711.

Whelan, S. and Goldman, N. 2001. A general em-
pirical model of protein evolution derived from
multiple protein families using a maximum-
likelihood approach. Mol. Biol. Evol. 18:691-
699.

Whelan, S., Lio, P., and Goldman, N. 2001. Molec-
ular phylogenetics: State-of-the-art methods for
looking into the past. Trends Genet. 17:262-272.

Yang, Z. 1996. Among-site rate variation and its
impact on phylogenetic analyses. Trends Ecol.
Evol. 11:367-372.

Zwickl, D.J. 2006. Genetic algorithm approaches
for the phylogenetic analysis of large biological
sequence datasets under the maximum likeli-
hood criterion. Doctoral thesis. The University
of Texas at Austin.


