

**Research Article** 

# **Study on Population Genetic Characteristics of Qinchuan Cows Using Microsatellite Markers**

Weibin Sun<sup>1</sup>, Hong Chen<sup>1,2,0</sup>, Chuzhao Lei<sup>1</sup>, Xueqin Lei<sup>1,3</sup>, Yinghan Zhang<sup>1</sup>

1. College of Animal Science and Technology, Northwest A & F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling 712100, China;

2. Institute of Cellular and Molecular Biology, Xuzhou Normal University, Xuzhou 221116, China;

3. College of Animal Science and Technology, Henan Sci-tech University, Luoyang 471000, China

**Abstract:** To evaluate the genetic polymorphisms and to search for available molecular markers for Qinchuan cattle, 90 Qinchuan cows were genotyped with 12 microsatellite markers. A total of 247 alleles were detected, with the number of alleles ranging from 13 (*INRA005*) to 33 (*HEL13*), giving a mean number of 21 alleles per locus. The total and mean effective allele number were 142.6229 and 11.8852, respectively. Mean sampling variance of the allele frequency was  $2.6036 \times 10^{-4}$ . Allele size ranges of the 12 microsatellite loci were different. The observed heterozygosity and expected heterozygosity were from 0.7842 (*INRA005*) to 0.9775 (*BM315*) and 0.7952 (*BM315*) to 0.9446 (*HEL13*), respectively. Mean observed heterozygosity and mean expected heterozygosity were 0.9117 and 0.9047, respectively. Polymorphism information content values were from 0.7653 (*INRA005*) to 0.9420 (*HEL13*), and mean polymorphism information content of the 12 microsatellite loci in Qinchuan cows. At the 12 microsatellite loci, the mean fixation index was -0.0076, reflecting that the degree of heterozygote defect at these loci was not high and deviations from Hardy-Weinberg equilibrium were not significant.

Keywords: Qinchuan cattle; microsatellite DNA; polymorphism

In the past 200 years, cattle breed registrations have led to genetic isolation of many cattle breeds. The selection of a few highly productive breeds has caused the decline of numerous other diverse breeds. This is the reason why the evaluation and the preservation of cattle genetic resources have already become a major and common problem that has attracted global concern. The genetic polymorphism and diversity found in the domestic breeds allow farmers to develop new characteristics in response to changes in environment, diseases, or market conditions. Some indigenous breeds often possess special gene combinations and adaptations (such as disease resistance, adaptation to harsh conditions or poor quality feeds, etc.) that are not found in other breeds, so the importance of increasing, maintaining and conserving the genetic diversity in these animals for the future has been recognized<sup>[1]</sup>. Maintenance of genetic diversity is a crucial basis for the selection of novel characteristics and ensures more accurate selection for higher

Received: 2006-03-17; Accepted: 2006-06-25

This work was supported by National 863 Project of China (No. 2003AA243051), National Natural Science Foundation of China (No. 30471238) and Top-notch Personnel Foundation of Northwest A&F University.

① Corresponding author. E-mail: chenhong1212@263.net; Tel: +86-29-8709 2004, Fax: +86-29-8709 2164

quality products<sup>[2]</sup>. Gradually attention has been turned in this direction, with every tool including phenotypic parameters and biochemical and molecular genetic techniques having been used to assess the genetic diversity of the animal. DNA-based technologies enable the detection of different polymorphic types. Among those, microsatellites or short tandem repeats (STRs) have been identified in all the eukaryotic species that have been investigated thus far<sup>[3,4]</sup>. Recently, microsatellite markers have become the mainstay of genetic linkage mapping<sup>[5-7]</sup>, have been used to identify the quantitative trait loci for economic traits<sup>[8,9]</sup> and to address questions concerning the genetic diversity and evolutionary history of cattle<sup>[10,11]</sup>.

As one of the elite yellow cattle breeds, Qinchuan cattle breed has had a long history of feeding and breeding in China. It is recorded that selecting good cattle to present to the master was written in 800 BC<sup>[12]</sup>. Oinchuan cattle were mainly used as draught animals during the long history. Since Zhangqian brought back alfalfa seeds from the West in 126 BC by the Silky Road, people began to plant alfalfa for cattle feed on the Guanzhong Plain, the main production area of Oinchuan cattle. This resulted in tremendous advances in the improvement of the Qinchuan cattle, particularly its body size, workability, and individual meat yield. In the long history of selection and breeding. Oinchuan cattle experienced draft type selection, dual type of draft and beef purpose selection and present beef purpose selection. Up to the last decade, although the genetic features of Qinchuan cattle have been extensively examined on body conformation traits<sup>[13]</sup>, chromosome characteristics<sup>[14,15]</sup>, blood protein polymorphisms<sup>[16]</sup> and mtDNA polymorphisms<sup>[17]</sup>, very little information of microsatellite data is available. The purpose of this study was to uncover the genetic polymorphisms of Qinchuan cattle by examining the microsatellite DNA and to accumulate some basic microsatellite data for quantitative trait loci detection and molecular breeding for the future.

## **1** Materials and Methods

# 1.1 Materials

Fresh blood samples were collected from 90 pure Qinchuan cows maintained at the Shaanxi Provincial Qinchuan Cattle Farm and Shaanxi Linwei Qinchuan cattle preservation area and stored at -80°C. The 12 bovine microsatellite markers located on different chromosomes used in this study were from microsatellite data of European cattle breeds (*Bos taurus*). Primers, map positions (Chromosome No.), and annealing temperatures can be found in CaDBase (http://www.pro- jects.roslin.ac.uk/cdiv/markers. html) (Table 1).

## 1.2 Methods

Genomic DNAs were isolated from whole blood samples as described by Chen *et al*<sup>[18]</sup>. DNA samples were dissolved in TE solution and stored at  $-20^{\circ}$ C. PCR amplification was performed in 12 µL of the reaction mixture. Each reaction step contained Taq DNA polymerase (0.5 U/µL) 1.0 µL, PCR buffer 1.2 μL, MgCl<sub>2</sub> (25 mmol/L) 1.5 μL, dNTPs (2.5 mmol/L) 0.75 µL, primers (10 pmol/L) 1.0 µL, template DNA (50 ng/ $\mu$ L) 2.0  $\mu$ L, and sterilized H<sub>2</sub>O 4.55  $\mu$ L. The temperature profiles were: initial denaturation at 95°C for 2 min; 35 cycles of denaturation at 94°C for 30 s, annealing at the optimal temperature of each primer pair for 30 s; and extension at 72°C for 45 s. Final extension was at 72°C for 10 min and then samples were held at 4°C. After PCR amplification, 3-4 µL of the amplified PCR products was loaded onto 8% polyacrylamide gel. After 3-4 h of electrophoresis (250 V), the gels were stained with silver nitrate (silver staining) and the fragment sizes were read using the Kodak Digital Science ID Image Analysis Software System.

Effective number of alleles (*Ne*), locus heterozygosity (*h*), mean locus heterozygosity (*H*), sampling variance of allele frequency ( $V_{(p_{ij})}$ ), polymorphic information content (*PIC*), and fixation

| Microsatellite loci | Primer sequences $(5' \rightarrow 3')$ | Chromosome No. | Annealing temperature ( $^{\circ}$ C) |
|---------------------|----------------------------------------|----------------|---------------------------------------|
| D141024             | F: GAGCAAGGTGTTTTTCCAATC               | 1              |                                       |
| BM1824              | R: CATTCTCCAACTGCTTCCTTG               | 1              | 58.5                                  |
| D1/01/10            | F: GCTGCCTTCTACCAAATACCC               | 2              |                                       |
| BM2113              | R: CTTCCTGAGAGAAGCAACACC               | 2              | 56.4                                  |
| CORNEL              | F: ACACAAATCCTTTCTGCCAGCTGA            | 14             | (1.2                                  |
| CSSM00              | R: AATTTAATGCACTGAGGAGCTTGG            | 14             | 61.2                                  |
| ET1150              | F: TACTCGTAGCGCAGGCTGCCTG              | 5              | (5.0                                  |
| EIHI32              | R: GAGACCTCAGGGTTGGTGATCAG             | 5              | 03.9                                  |
|                     | F: CAACAGCTATTTAACAAGGA                | 15             | 54.0                                  |
| HELI                | R: AGGCTACAGTCCATGGGATT                | 15             | 54.0                                  |
| IIEI 12             | F: TAAGGACTTGAGATAAGGAG                | 11             | 51.0                                  |
| TELIS               | R: CCATCTACCTCCATCTTAAC                | 11             | 51.8                                  |
| HEI 5               | F: GCAGGATCACTTGTTAGGGA                | 21             | 54.0                                  |
| TELJ                | R: AGACGTTAGTGTACATTAAC                | 21             | 54.0                                  |
| HEI O               | F: CCCATTCAGTCTTCAGAGGT                | 8              | 51.9                                  |
| HEL9                | R: CACATCCATGTTCTCACCAC                | 0              | 51.6                                  |
| IN/DA005            | F: CAATCTGCATGAAGTATAAATAT             | 12             | 58 5                                  |
|                     | R: CTTCAGGCATACCCTACACC                |                | 58.5                                  |
| TCI A 196           | F: CTAATTTAGAATGAGAGAGGCTTCT           | 20             | 58.8                                  |
| TOLAIZO             | R: TTGGTCTCTATTCTCTGAATATTCC           |                | 56.6                                  |
| TCI A227            | F: CGAATTCCAAATCTGTTAATTTGCT           | 18             | 54.0                                  |
| 101422/             | R: ACAGACAGAAACTCAATGAAAGCA            |                | 54.0                                  |
| RM315(215)          | F: TGGTTTAGCAGAGAGCACATG               | 5              | 65.0                                  |
| DIVISIS(213)        | R: GCTCCTAGCCCTGCACAC                  | -              | 05.0                                  |

Table 1 Information of 12 bovine microsatellites analyzed in this study

index (*F*) were calculated using the following equations:

$$N_{e} = 1/\sum_{i=1}^{m} p_{i}^{2} \quad h=1-\sum_{i=1}^{m} p_{i}^{2},$$

$$H=\sum_{i=1}^{m} h/L \quad V_{i}(p_{ij})=p_{i}(1-p_{ij})/[2(n-1)],$$

$$PIC=1-\sum_{i=1}^{m} p_{i}^{2}-\sum_{i=1}^{m-1} \sum_{j=i+1}^{m} 2p_{i}^{2}p_{j}^{2},$$

$$E=C_{i}(p_{ij})/(p_{ij})$$

 $F = (f_{\text{expected}} - f_{\text{observed}})/f_{\text{expected}}$ .

Where, *m* is the allele number of a microsatellite locus; *pi*, *pj* the frequency of the *i*th and *j*th allele of a locus; *pij* the frequency of the *i*th allele of the *j*th locus; *L* the number of loci, and  $f_{\text{expected}}$  and  $f_{\text{observed}}$  are the expected frequency and the observed frequency of heterozygote.

#### 2 **Results**

## 2.1 Detection of microsatellite polymorphisms

After amplification, PCR products were first examined with 1% agarose gel, and if the amplification was satisfactory,  $3-4 \mu L$  of the samples were loaded onto 8% nondenaturing polyacrylamide gel for further analysis (Figs. 1 and 2).

#### 2.2 Alleles and allele frequency distribution

All 12 microsatellite loci were polymorphic in the Qinchuan cow population (Fig. 3 and Table 2). Total 247 alleles were detected from the 12 microsatellite loci examined. The number of alleles per locus ranged from 13 (*INRA005*) to 33 (*HEL13*), giving a mean number of 21 alleles per locus. The

1 2 3 4 5 6 7 8 9 10 11 12 M 13 14 15 16 17 18 19 20 21 22

**Fig. 1** 8% PAGE electrophoresis of PCR products at microsatellite *TGLA126* locus in Qinchuan cows M: DNA marker pBR322 DNA/*Msp* [ ; 1–22: samples.

| 1   | 2 | 3    | 4   | 5 | 6   | 7 | 8     | 9 | 10 | 11 | Μ | 12 | 13 | 14 | 15  | 16  | 17 | 18 | 19 | 20  |
|-----|---|------|-----|---|-----|---|-------|---|----|----|---|----|----|----|-----|-----|----|----|----|-----|
| 111 |   | 1111 | === | = | 111 | = | 111 . |   | 11 | 11 | - | 11 | 11 | 11 | 111 | 111 | =  | 11 | =  | III |
|     |   |      |     |   |     |   |       |   |    |    | _ |    |    |    |     |     |    |    |    |     |

Fig. 2 8% PAGE electrophoresis of PCR products at microsatellite *HEL9* locus in Qinchuan cows

M: DNA marker pBR322 DNA/Msp I ; 1-20: samples.

 Table 2
 Allele numbers, allele size ranges, most frequent alleles and their frequencies, and effective allele numbers (Ne) of 12 microsatellite loci in Qinchuan cow population

| Loci    | Allele number | Allele number | Common allele<br>number in<br>Oinchuan cattle | Sampling variance      | Number   | All     | ele<br>(bp) | Most frequent alleles |             |  |
|---------|---------------|---------------|-----------------------------------------------|------------------------|----------|---------|-------------|-----------------------|-------------|--|
| 2001    | cattle        | cattle breeds | and European<br>cattle breeds                 | of allele<br>frequency | alleles  | Minimum | Maximum     | Alleles               | Frequencies |  |
| BM1824  | 17            | 9             | 5                                             | 3.0057E-04             | 11.0392  | 183     | 219         | 189                   | 0.1534      |  |
| BM2113  | 19            | 10            | 7                                             | 2.7226E-04             | 12.5800  | 128     | 166         | 144                   | 0.1280      |  |
| CSSM66  | 24            | 14            | 13                                            | 2.1569E-04             | 12.7143  | 179     | 231         | 183                   | 0.1517      |  |
| ETH152  | 22            | 11            | 11                                            | 2.3863E-04             | 15.1783  | 185     | 235         | 215                   | 0.1037      |  |
| HEL1    | 15            | 9             | 9                                             | 3.3460E-04             | 9.3740   | 101     | 129         | 107                   | 0.1854      |  |
| HEL13   | 33            | 9             | 9                                             | 1.6082E-04             | 18.0578  | 142     | 220         | 186                   | 0.1200      |  |
| HEL5    | 17            | 10            | 8                                             | 2.9873E-04             | 10.3962  | 141     | 187         | 161                   | 0.1970      |  |
| HEL9    | 22            | 13            | 11                                            | 2.3792E-04             | 14.5699  | 153     | 191         | 155                   | 0.1098      |  |
| INRA005 | 13            | 4             | 3                                             | 3.4358E-04             | 4.8818   | 139     | 171         | 147                   | 0.2819      |  |
| TGLA126 | 17            | 9             | 8                                             | 2.8510E-04             | 7.2809   | 113     | 147         | 121                   | 0.1778      |  |
| TGLA227 | 21            | 15            | 15                                            | 2.4103E-04             | 10.1275  | 67      | 111         | 87                    | 0.2031      |  |
| BM315   | 27            | 15            | 0                                             | 1.9536E-04             | 16.4230  | 108     | 174         | 124                   | 0.0988      |  |
| Total   | 247           | 128           | 107                                           | -                      | 142.6229 | -       | -           | -                     | -           |  |
| Means   | 21            | 10            | 9                                             | 2.6036E-04             | 11.8852  | -       | -           | -                     | -           |  |

total effective allele number and mean effective allele number per locus were 142.6229 and 11.8852. The mean sampling variance of allele frequency at the 12 microsatellite loci was  $2.6036 \times 10^{-4}$ , which was very low, indicating that the allele frequency sampling estimation at each microsatellite locus was accurate and did reflect the genetic characteristics of the Qinchuan cattle.

At every microsatellite locus, allele size range was distinctive. And at every locus, there was a most frequent allele. At *INRA005* and *TGLA227*, the most frequent allele was 147 and 87, which had an allele

|                       |               | 231     |              |                       |                       |         |              |              |            |            |                            |
|-----------------------|---------------|---------|--------------|-----------------------|-----------------------|---------|--------------|--------------|------------|------------|----------------------------|
|                       |               |         |              |                       |                       |         |              |              |            | 174        |                            |
|                       |               | 225     |              |                       |                       |         |              | 187          |            |            |                            |
| 219                   | 166           | 223     |              | 111                   |                       |         |              |              | 220        | 164        |                            |
| 217                   | 164           | 221 221 | 235          |                       |                       |         | 191          | 183          |            | 160        |                            |
|                       | 162           | 219     | 227          | 107 107               |                       |         |              | 181          | 216        | 158        |                            |
|                       | 102           |         | 227          | 107 107               |                       |         |              |              | 212        | 1.54       |                            |
| 211                   | 160           | 217     | 225          | 105 105               |                       |         | 187          | 177          | 208<br>206 | 152        |                            |
| 209                   | 158           | 215     | 221          | 103 103               |                       |         |              | 175          | 204<br>202 | 148<br>146 |                            |
| 207                   | 156           | 213     | 219          | 101 101               |                       |         | 183          | 172          | 200        | 144        |                            |
| 207                   | 154           | 211     | 217          | 99 99                 |                       |         |              | 173          | 198        | 142        | 147                        |
| 205                   | 152           | 209     | 215          | 97 97                 | 171                   |         | 179          | 171          | 196196     | 138        | 145                        |
| 203                   | 150           | 207     | 213          | 95 95                 | 169                   | 129     | 177          | 169          | 194 194    | 136<br>135 | 143                        |
| 201                   | 149           | 205     | 211          | 02 02                 |                       | 107     | 175          | 167167       | 192 192    | 134        | 141                        |
| 199                   | 140           | 205     | 211          | 93 93                 |                       | 127     | 175          | 165165       | 190 190    | 135        | 141                        |
| 197                   | 146           | 201 201 | 209 209      | 91 91                 | 165                   | 125     | 173          | 163163       | 188 188    | 131<br>130 | 139                        |
| 105                   | 144           | 199 199 | 207 207      | 89 89                 |                       | 123     | 171          | 161          | 196 196    | 129        | 137                        |
| 195                   | 142 142       | 197 197 | 205 205      | 87 87                 | 161                   | 121     | 169          | 101          | 100100     | 128        | 135                        |
| 193                   | 140 140       | 105 105 | 203 203      | 85 85                 | 150                   | 110     | 167167       | 159          | 184 184    | 126        | 121 121                    |
| 191 191               | 140 140       | 195 195 | 203 203      | 85 85                 | 139                   | 119     | 10/10/       | 157157       | 182 182    | 125        | 151 151                    |
| 180 180               | 138 138       | 193 193 | 201 201      | 83 83                 | 153                   | 117117  | 165165       | 155155       | 180        | 123        | 129 129                    |
| 107 107               | 136 136       | 191 191 | 199 199      | 81 81                 | 151                   | 115115  | 163163       | 155155       | 100        | 122        | 127 127                    |
| 187 187               | 134 134       | 189 189 | 197 197      | 79 79                 | 149                   | 113113  | 161161       | 153153       | 178 178    | 120<br>119 | 125 125                    |
| 185 185               |               |         |              |                       |                       |         |              | 151151       | 176        | 118        |                            |
| 183 183               | 132 132       | 187 187 | 195 195      | 77                    | 147                   | 111111  | 159159       | 149149       | 174<br>172 | 117<br>116 | 123 123                    |
|                       | 130           | 185 185 | 193 193      | 75                    | 145                   | 109109  | 157157       |              | 166        | 115        | 121 121                    |
| 181                   | 128 128       | 183 183 | 191 191      | 73                    | 143 143               | 107107  | 155155       | 147 147      | 164<br>162 | 114<br>113 | 119 119                    |
| 179                   | 10            | 101 101 | 100 100      |                       | 1 41 1 41             | 105105  | 1 5 3 1 5 3  | 145 145      | 158        | 112        | 118 118                    |
| 177                   | 126           | 181 181 | 189 189      | 71                    | 141 141               | 105105  | 153153       | 143143       | 154<br>152 | 111 110    | 117 117                    |
| 175                   |               | 179 179 | 187          |                       | 139 139               | 103103  | 151          | 1 4 1        | 150        | 109        | 115                        |
| 1/5                   | 122           | 177     | 185          | 67                    | 137                   | 101 101 | 149          | 141          | 146        | 108        | 113                        |
| $\mathbf{E}$ <b>Q</b> | E Q<br>BM2113 | E Q     | E Q          | $\mathbf{E}$ <b>Q</b> | $\mathbf{E}$ <b>Q</b> | E Q     | E Q<br>HEI 5 | E Q<br>HEI Q | E Q        | E Q        | E Q                        |
| DN11024               | DML11J        | CODMICO | $L_{IIIIJL}$ | 10LA22/               | u u u u u u u u u     |         | 1112LJ       | 111117       | IILLIJ     | DINIJIJ    | $\mu \cup L \cap I \neq 0$ |

Weibin Sun et al.: Study on Population Genetic Characteristics of Qinchuan Cows Using Microsatellite Markers

Fig. 3 Alleles of 12 bovine microsatellites in Qinchuan cattle (Q) mapped against allele identified in European cattle breeds (E)

The numbers in the figure mean the alleles with different sizes (bp).

frequency of 0.2819 and 0.2031, respectively.

# 2. 3 Population genetic characteristics of microsatellite loci

Observed heterozygosity, expected heterozygosity, observed homozygosity, expected homozygosity, mean heterozygosity, polymorphism information content (*PIC*), and fixation index (F) in Qinchuan cow population were shown in Table 3.

Observed heterozygosity and expected heterozygosity at the 12 microsatellites in Qinchuan cow population were from 0.7842 (*INRA005*) to 0.9775 (*BM315*) and from 0.7952 (*BM315*) to 0.9446 (*HEL13*), respectively. Mean observed heterozygosity and mean expected heterozygosity were 0.9117 and 0.9047, respectively. Polymorphism information content (*PIC*) was from 0.7653 (*INRA005*) to 0.9420 (*HEL13*), and mean *PIC* was 0.8965. *PIC* is a parameter indicative of the degree of informativeness of a marker. Following the criteria of Botstein *et al*<sup>[19]</sup>, in this study, all 12 microsatellite loci appeared to be highly informative (*PIC* > 0.5), According to the selective standard of the microsatellite loci<sup>[20]</sup>, microsa-

tellite loci ought to have at least four alleles to be considered useful for the evaluation of genetic diversity. Based on this criterion, the 12 microsatellite loci used in this study were useful for the evaluation of genetic diversity in Qinchuan cattle. These results imply that abundant genetic polymorphisms exist in the Qinchuan cattle. Of the 12 microsatellite loci, the fixation indices of *BM1824*, *ETH152*, and *INRA005* microsatellite loci were positive, and others were negative, The mean fixation indices was -0.0076, reflecting that the degree of heterozygote defect at these loci was not high and deviations from Hardy-Weinberg equilibrium were not significant.

# 3 Discussion

The study of genetic polymorphism is the basis for any animal breeding program. The first step in a effective breeding or conservation program is accurate evaluation of available genetic resources, and microsatellite analysis is a well-established tool for measuring the genetic polymorphisms in a population. The microsatellite loci analyzed in this study were

 Table 3 Observed heterozygosity, expected heterozygosity and observed homozygosity, expected homozygosity, polymorphic information content (*PIC*), and fixation indices (*F*) in Qinchuan cow population

| Loci    | Observed<br>heterozygosity | Expected heterozygosity | Observed<br>homozygosity | Expected homozygosity | PIC    | Fixation indices |
|---------|----------------------------|-------------------------|--------------------------|-----------------------|--------|------------------|
| BM1824  | 0.8637                     | 0.9094                  | 0.1363                   | 0.0906                | 0.9024 | 0.0503           |
| BM2113  | 0.9390                     | 0.9205                  | 0.0610                   | 0.0795                | 0.9149 | -0.0201          |
| CSSM66  | 0.9214                     | 0.9213                  | 0.0786                   | 0.0787                | 0.9161 | -0.0001          |
| ETH152  | 0.8902                     | 0.9341                  | 0.1098                   | 0.0659                | 0.9302 | 0.0470           |
| HEL1    | 0.9427                     | 0.8933                  | 0.0573                   | 0.1067                | 0.8839 | -0.0553          |
| HEL13   | 0.9526                     | 0.9446                  | 0.0474                   | 0.0554                | 0.9420 | -0.0085          |
| HEL5    | 0.9078                     | 0.9038                  | 0.0922                   | 0.0962                | 0.8965 | -0.0044          |
| HEL9    | 0.9662                     | 0.9314                  | 0.0338                   | 0.0686                | 0.9272 | -0.0374          |
| INRA005 | 0.7842                     | 0.7952                  | 0.2158                   | 0.2048                | 0.7653 | 0.0138           |
| TGLA126 | 0.8836                     | 0.8627                  | 0.1164                   | 0.1373                | 0.8501 | -0.0242          |
| TGLA227 | 0.9115                     | 0.9013                  | 0.0885                   | 0.0987                | 0.8937 | -0.0113          |
| BM315   | 0.9775                     | 0.9391                  | 0.0225                   | 0.0609                | 0.9358 | -0.0409          |
| Mean    | 0.9117                     | 0.9047                  | 0.0883                   | 0.0953                | 0.8965 | -0.0076          |

referenced to European cattle breeds proposed by CaDBase. A total of 247 alleles from the 12 microsatellite loci were detected in Qinchuan cattle with the mean allele number per locus being 21, which was considerably higher than the 8.4 reported by MacHugh et al. <sup>[10]</sup> and this probably reflected a bias in the selection of loci in different breeds, which had been preselected for polymorphisms. A total of 107 alleles in Qinchuan cattle shared with European cattle, suggesting that Qinchuan cattle share the same phylogenic origin with European cattle. Compared with the 128 examined alleles found in European cattle breeds, 247 alleles were found in Qinchuan cattle, implying that genetic polymorphisms in Qinchuan cattle were more abundant than European cattle. Most European cattle breeds experienced extensive selection and inbreeding; therefore, some low-frequency alleles at most microsatellite loci might have been lost but are still preserved in Oinchuan cattle. At BM315 locus, there were no common alleles between Oinchuan cattle and European cattle breeds. Additional studies are needed to explain this result. Genetic and archaeological evidences support at least two domestications events from different wild progenitor aurochs races. Bos taurus, also termed taurine cattle, are postulated to have domestic origins in the Near East and Africa, whereas *Bos indicus*, or zebu, arose in India<sup>[10,21]</sup>. Previous studies<sup>[14,15]</sup> have shown that Chinese indigenous cattle also originated from European cattle (B.taurus) and Indian zebu (B. indicus). Several microsatellite alleles in Oinchuan cattle could be interpreted as a result of retention of more alleles from the original ancestor and with fewer alleles being lost in migration and evolution. Moreover, possible introgression of zebu alleles from the zebu to Qinchuan cattle may have contributed to the increased polymorphisms. Allelic size distributions of Indian zebu are possibly distinct from those in taurine animals<sup>[10]</sup>. It should be noted that, MacHugh et al.<sup>[10]</sup> reported that allele of 191 and 193 bp at locus ETH152 can be used as the diagnostic alleles for zebu (B.indicus),

because in their study these two alleles were only found in African zebu (*B.indicus*) and Indian zebu (*B. indicus*), but did not exist in European cattle breeds. However, these two alleles do exist in European cattle breeds in the CaDBase, and they were also found in Qinchuan cattle in this study. This discrepancy possibly resulted from the smaller sampling sizes (30–40 per breed), in which some low-frequency alleles were possibly lost. Because sample size variation has a much greater effect on highly polymorphic loci than on less polymorphic loci <sup>[22]</sup>, to detect more low-frequency alleles at polymorphic loci similar to those in this study, sample size larger than 30–40 microsatellite loci is definitely required.

Genotype data from 12 microsatellites typed in 90 Qinchuan cows displayed a relatively high heterozygosity and PIC compared with European cattle breeds <sup>[11, 23, 24]</sup>, and other Chinese cattle breeds <sup>[25, 26]</sup>. Since the early 19th century, when the concept of breed grew in popularity, many European cattle breeds have become genetically isolated and in most cases their origins could be traced to a small pool of founder individuals. Chinese Holstein has also possibly experienced a similar breeding practice. Simple genetic background and inbreeding contribute to the loss of genetic variation, which is demonstrated as fewer alleles and lower PIC [27]. In the case of Qinchuan cattle, during the long history of selection and breeding, crossbreeding and inbreeding in central preservation groups were strictly prohibited and some extensive breeding programs for specialized breeding direction have not been completely undertaken for long periods. Compared with the specialized European cattle breeds, more alleles at most microsatellite loci have been preserved. The abundant genetic polymorphisms affords an opportunity to improve the defects that exist in Qinchuan cattle, such as low daily gain, low dressing percentage and low milk yield, to suffice the needs of the rapidly developing beef industry.

## References

- Oldenbrock JK. Introduction. In: Oldenbrock JK, ed. Genebanks and the Conservation of Farm Animal Genetic Resources, ID-Lelystad. The Netherlands, 2002, 1–31.
- 2 Bradley DG, Loftus RT, Cunningham P, MacHugh DE. Genetics and domestic cattle origins. *Evol Anthropol*, 1998, 6: 79–86.
- 3 Tautz D. Notes on the definition and nomenclature of tandemly repetitive DNA sequences. In: Pena SDJ, Chakraborty R, Epplen JT, Jeffreys AJ, eds. DNA Fingerprint: State of the Science . Birkäuser Verlag, Basel, 1993, 21.
- 4 Ron M, Blanc Y, Band M, Ezra E, Weller JI. Misidentification rate in Israeli dairy cattle population and its implications for genetic improvement. *J Dairy Sci*, 1996, 79: 676–681.
- 5 Barendse W, Armitage SM, Kossarek LM, Shalom A, Kirkpatrick BW, Ryan AM, Clayton D, Li L, Neibergs HL, Zhang N, Grosse WM, Weiss J, Creighton P, McCarthy F, Ron M, Teale AJ, Fries R, McGraw RA, Moore SS, Georges M, Soller M, Womack JE, Hetzel DJS. A genetic linkage map of the bovine genome. *Nature Genetics*, 1994, 6: 227–235.
- 6 Bishop MD, Kappes SM, Keele JW, Stone RT. A genetic linkage map for cattle. *Genetics*, 1994, 136: 619–639.
- 7 Kikuchi S, Fujima D, Sasazaki S, Tsuji S, Mizutani M, Fujiwara A, Mannen H. Construction of a genetic linkage map of Japanese quail (*Coturnix japonica*) based on AFLP and microsatellite markers. *Animal Genetics*, 2000, 36: 227–231.
- 8 Ashwell MS, Heyen DW, Sonstegard TS, Van Tassell CP, Da Y, VanRaden PM, Ron MJ, Weller I, Lewin HA. Detection of quantitative trait loci affecting milk production, health, and reproductive traits in Holstein cattle. *J Dairy Sci*, 2004, 87: 468–475.
- 9 Smith SB, Zembayashi M, Lunt DK, Sanders JO, Gilbert CD. Carcass traits and microsatellite distributions in offspring of sires from three geographical regions of Japan. J Anim Sci, 2001, 79: 3041–3051.
- 10 MacHugh DE, Shriver MD, Loftus RT, Cunningham P, Bradley DG. Microsatellite DNA variation and the evolution, domestication and phylogeography of Taurine and Zebu cattle (*Bos taurus* and *Bos indicus*). *Genetics*, 1997, 146: 1071– 1086.
- MacHugh DE, Loftus RT, Cunningham P, Bradley DG. Genetic structure of seven European cattle breeds assessed using 20 microsatellite markers. *Anim Genet*, 1998, 29, 333–340.
- 12 Qiu H, Ju ZY, Chang ZJ. A survey of cattle production in China. World Animal Review, 1993, 3: 75 http://www.fao.org/ documents/show\_cdr.asp?url\_file=/docrep/V0600T/v0600T07. htm
- 13 Chen YC, Pang ZH, Wang YC. Relationship between breed-

ing history factors and body size of Chinese cattle. In: Ecological features and utilizing direction of Chinese. Beijing: China Agricultural Press, 1990 (in Chinese with an English abstract).

- 14 Chen H, Qiu H, Zhan TS, Jia JX. Study on the chromosomal polymorphisms of four yellow cattle breeds. *Hereditas* (Beijing), 1993, 15(4): 14–17 (in Chinese with an English abstract).
- 15 Lei CZ, Chen H, Hu SR. Study on Y chromosome polymorphisms and origin and classification of Chinese cattle. Acta Agriculturae Boreali-occidentalis Sinica, 2000, 9(4): 43–47 (in Chinese with an English abstract).
- 16 Wu B. Study on the blood protein polymorphisms and isoenzyme and genetic relationship of some Chinese Yellow cattle breeds [Dissertation]. Northwest Agricultural College, 1986 (in Chinese with an English abstract).
- 17 Lei CZ. Study on the mtDNA polymorphisms in four Chinese animal species (Yellow cattle, Water Buffalo, Yak and Domestic Donkey) [Dissertation]. Northwest A&F University, 2002 (in Chinese with an English abstract).
- 18 Chen H, Leibenguth F. Studies on multilocus fingerprintings, RAPD markers and mitochondrial DNA of four gynogenetic fish. *Biochem Genetics*, 1995, 33: 297–306.
- 19 Botstein D, White RL, Skolnick M, Davis RW. Construction of a genetic linkage map in human using restriction fragment length polymorphisms. *Amer J Hum Genet*, 1980, 32, 314–331.
- 20 Barker JSF. A global protocol for determining genetic distances among domestic livestock breeds. In: Proceedings of the 5th World Congress on Genetics Applied to Livestock Production, Guelph and Ontario, Canada, 1994, 21: 501–508.
- 21 Loftus RT, MacHugh DE, Bradley DG, Sharp PM, Cunningham EP. Evidence for two independent domestications of cattle. *Proc Natl Acad Sci USA*, 1994, 91: 2757–2761.
- 22 Yan LN, Zhang DX. Effects of sample size on various genetic diversity measures in population genetic study with microsatellite DNA markers. *Acta Zoologica Sinica*, 2004, 50(2): 279–290 (in Chinese with an English abstract).
- 23 Hanslik S, Harr B, Brem G, Schlotterer C. Microsatellite analysis reveals substantial genetic differentiation between contemporary New World and Old World Holstein Friesian populations. *Anim Genet*, 2000, 31: 31–38.
- 24 Martin-Burriel I, Garcia-Muro E, Zaragoza P. Genetic diversity analysis of six Spanish native cattle breeds using microsatellites. *Anim Genet*, 1999, 30: 177–182.
- 25 Sun SH, Sang RZ, Shi SK. Study on genetics variation of microsatellite in beef cattle population. *Journal of China Agricultural University*, 1994, 4: 83–87 (in Chinese with an English abstract).
- 26 Wu W, Wang D, Cao HH. Genetic structure of five Chinese

and foreign cattle breeds using microsatellite DNA markers. *Journal of Jinlin Agricultural University*, 2000, 22(4): 5–10 (in Chinese with an English abstract).

27 Shan X, Zhang Y, LI N. Effects of several microsatellite DNA loci on milk production in dairy cattle. *Acta Genetica Sinica*, 2002, 29(5): 430–433 (in Chinese with an English abstract).

# 秦川母牛群体遗传特性的微卫星标记研究

孙维斌<sup>1</sup>,陈宏<sup>1,2</sup>,雷初朝<sup>1</sup>,雷雪芹<sup>3</sup>,张英汉<sup>1</sup>

1. 西北农林科技大学动物科技学院,陕西省农业分子生物学重点实验室,杨凌 712100;

2. 徐州师范大学细胞与分子生物学研究所, 徐州 221116;

3. 河南科技大学动物科技学院, 洛阳 471000

**摘 要:** 为了从DNA分子水平揭示秦川牛群体遗传多态性和群体遗传结构,寻找可用于秦川牛的微卫星标记,本研究选择 了 12 个普通牛(*Bos taurus*) 微卫星标记检测了 90 头秦川母牛各微卫星位点的遗传变异及多态性。结果表明,在秦川母牛 群体中,12 个微卫星位点共检测到了 247 个等位基因,各位点的等位基因数在 13 (*INRA005*) ~33 个(*HEL13*)之间,平均 每个微卫星位点的等位基因数为 21 个;总有效等位基因数和平均每个位点平均有效等位基因数 (*Ne*)分别分为 142.6229 和 11.8852。各位点平均基因频率取样方差(*V*(*p*<sub>ij</sub>))为 2.6036×10<sup>-4</sup>。12 个微卫星位点平均观察杂合度(*Ho*)和平均期望杂合度 (*He*)在 0.7842 (*INRA005*) ~0.9775 (*BM315*) 和 0.7952 (*BM315*) ~0.9446 (*HEL13*)之间。12 个位点平均多态信息含量 (*PIC*)在 0.7653 (*INRA005*) ~0.9420 (*HEL13*)之间,平均为 0.8965. 12 个微卫星位点均属于高度多态位点,这表明秦 川母牛群体中所检测各微卫星位点具有丰富的遗传多态性,具备较大的选择潜力。12 个微卫星位点的平均固定指数 (*F*) 为-0.0076,即各位点杂合子的缺陷度不高,即偏离Hardy-Weinberg 平衡的程度不大。

关键词:秦川母牛;微卫星 DNA;多态性

作者简介:孙维斌(1973-),男,陕西留坝县人,博士,研究方向:分子遗传与反刍动物营养。目前在日本筑波大学与日本国立畜产草地研究所消化管微生物实验室从事博士后研究工作。研究方向:瘤胃微生物分子生物学。E-mail: albertswb@yahoo.com.cn